
School of Computer Science and Engineering

Faculty of Engineering

The University of New South Wales

A Library Based Approach to the

Verification of Languages with Linear

Types

by

Michael Alexander Sproul

Thesis submitted as a requirement for the degree of

Bachelor of Science (Honours)

Submitted: May 2016

Supervisor: Dr. Ben Lippmeier

Student ID: z3484357

Topic ID: 3680

A Library Based Approach to the Verification of Lan-
guages with Linear Types

Michael Alexander Sproul

Abstract

We present a library of proofs to aid in the mechanical verification of languages
with substructural type systems. We identify context splitting as a widely appli-
cable technique in the verification of these languages, and argue that our proofs
are relevant to any language that uses multiple contexts to separate linear as-
sumptions from non-linear ones, in the style of Dual Intuitionistic Linear Logic.
Our work is implemented using the Coq interactive theorem prover and builds
upon François Pottier’s DbLib library for variable binding using De Bruijn in-
dices. We provide a proof of type soundness for a linear lambda calculus and
highlight how similar techniques might be applied to The Linear Language with
Locations, L3 – which is representative of a class of more complex languages with
destructive updates.

ii

Michael Alexander Sproul A Library Based Approach to the Verification of
Languages with Linear Types

Acknowledgements

I would like to thank my supervisor, Ben Lippmeier, for his sage advice and encourage-
ment. I would also like to thank the awesome Programming Languages and Systems
research group at UNSW for stimulating my imagination and supporting my project.
In particular, I’m grateful to Gabi and Manuel for their leadership and for making it
all possible. I would also like to thank my family, friends and Lily for supporting me
throughout and keeping me grounded. Thank you.

iii

A Library Based Approach to the Verification of Lan-
guages with Linear Types

Michael Alexander Sproul

Contents

1 Introduction 1

2 Background 3

2.1 Coq and the Curry-Howard Correspondence 3

2.2 Beyond C . 3

2.3 Overview of Linear and Affine Typing 4

2.4 The Linear Lambda Calculus . 5

2.4.1 Structural Rules . 9

2.4.2 Summary of the Linear Lambda Calculus 11

2.5 Operational Semantics and Type Soundness 11

2.6 The Linear Language with Locations, L3 13

2.7 Uniqueness Typing . 19

2.8 Systems of Capabilities . 21

2.8.1 Cyclone . 21

2.8.2 Pottier’s Type-and-Capability System with Hidden State 21

2.8.3 Mezzo . 23

2.9 Linear Dependent Types . 23

2.10 Typed Assembly Languages and Trustworthy Compilers 24

2.11 Variable Naming and Binding . 25

iv

Michael Alexander Sproul A Library Based Approach to the Verification of
Languages with Linear Types

2.11.1 Higher-order Abstract Syntax . 26

2.11.2 De Bruijn Indices and the Locally Nameless Approach 27

2.12 Summary of Mechanisation Techniques 29

2.13 Summary of Previous Work . 30

2.14 Evaluation Framework . 30

2.14.1 Conceptual Goals . 31

2.14.2 Implementation Goals . 32

3 Own Work 34

3.1 Research Questions . 34

3.2 Outline of Own Work . 34

3.3 Purely Linear Lambda Calculus . 35

3.4 Integrating with DbLib . 38

3.5 Representing Typing Contexts . 40

3.6 Emptiness . 41

3.7 Context Splitting . 42

3.7.1 Single Element Splits . 43

3.7.2 Properties of Context Splitting 45

3.7.3 Lemmas Required for Soundness 47

3.8 Progress . 48

3.9 Preservation . 49

3.9.1 Substitution . 50

3.10 Summary . 52

4 Evaluation 53

4.1 Generality and Applicability . 53

4.2 Towards a Coq Formalisation of L3 . 54

v

A Library Based Approach to the Verification of Lan-
guages with Linear Types

Michael Alexander Sproul

4.3 Further Work: Separation Logic . 55

4.4 Quality of Coq Proofs . 56

4.4.1 Case Analysis and Indentation 56

4.4.2 Avoiding Auto-Generated Variable Names 57

4.4.3 Automation and Repetition . 60

4.5 Summary of Evaluation . 62

5 Conclusion 64

Bibliography 66

Appendix 70

A.1 PLLC Syntax in Coq . 70

A.2 PLLC Typing Rules in Coq . 71

A.3 PLLC Operational Semantics in Coq . 72

A.4 Complete Source Code . 73

vi

Michael Alexander Sproul A Library Based Approach to the Verification of
Languages with Linear Types

Chapter 1

Introduction

Computer systems form an integral part of modern society, both in the form of personal

devices and critical infrastructure. Ensuring the correct operation of computer hard-

ware and software is therefore a worthwhile endeavour. One emerging technique for

the construction of robust software systems is the use of mathematical formalisations

and proofs of correctness. In this paradigm, desirable properties of the software can

be proven true using a computer-based proof assistant, which itself relies on a minimal

amount of trusted code. For software formalisation and verification to be truly effec-

tive, the objects under consideration must have precise mathematical models associated

with them. Typically these models are created based on the semantics (meaning) of the

programming language that the software is written in. Unfortunately for the would-be

software verifier, most popular programming languages lack formal semantics and are

therefore not amenable to verification techniques.

The C Programming Language, in which large amounts of low-level systems software

is written, is an example of a language that is difficult to reason about because of its

murky semantics. According to the language specification the results of some operations

are classified as undefined behaviour, meaning that the compiler has no obligation to

produce a specific result [ISO11]. Ideally, we would like to rule out undefined behaviour

at compile time through the use of a type system. In this thesis we focus on the formal

1

A Library Based Approach to the Verification of Lan-
guages with Linear Types

Michael Alexander Sproul

semantics of languages with strong type systems that are more well-suited to low-level

software verification than C.

In particular, we are interested in resource-aware languages which exploit substructural

type systems based on linear logic [Gir87] to track how values are consumed and de-

stroyed. Intuitively, a linear value is one that is guaranteed to be used exactly once.

In the context of systems software, we can use variants of linearity to enable destruc-

tive updates for uniquely reference values, or automatic memory management without

garbage collection.

We begin by discussing the linear lambda calculus (LLC), which is a simple extension

of λ-calculus with a linear type system. We then go on to describe more expressive

languages which include features like shared pointers and destructive updates.

The main contribution of this thesis is a software library for the interactive theo-

rem prover Coq. The library includes definitions and lemmas primarily about context

splitting, which is a technique used in many substructural type systems. Our code is

an extension of François Pottier’s DbLib library which aims to de-duplicate the effort

required to reason about variable binding, just as we hope to de-duplicate the effort

required to reason about linear typing.

As a proof-of-concept for our approach we have undertaken a proof of type soundness for

a linear lambda calculus. Type soundness is a key result in establishing the sensibility

of a language and we argue that our approach is also applicable to soundness proofs

for more complex languages with the same foundations. Specifically, we argue that a

proof of soundness for The Linear Language with Locations (L3) might make effective

use of our library, and that L3 is representative of languages that build upon the linear

lambda calculus by adding destructive updates and shared pointers.

2

Michael Alexander Sproul A Library Based Approach to the Verification of
Languages with Linear Types

Chapter 2

Background

2.1 Coq and the Curry-Howard Correspondence

Recall that the Curry-Howard correspondence establishes an equivalence between log-

ical systems and type systems for programming languages. By considering logical

propositions as types, the proof of a proposition P can be given by constructing a value

of type P in the equivalent programming language. The Coq proof assistant provides a

dependently typed programming language with inductive data-types that allows com-

plex propositions to be expressed and proved in this manner. Coq proofs make use of

tactics which abstract over repetitive reasoning.

2.2 Beyond C

Historically, low-level systems software has been written primarily in the C program-

ming language, which was originally designed without a formal semantics. Despite this,

a large body of work has developed around semantics for C and the verification of low-

level software that such work enables. Michael Norrish’s contribution of a structural

operational semantics for C [Nor98] is notable in that it laid the foundations for C

verification projects like the seL4 micro-kernel [KAE+14]. The seL4 kernel is written

3

A Library Based Approach to the Verification of Lan-
guages with Linear Types

Michael Alexander Sproul

in C and is accompanied by proofs of correctness about its security, including crash-

freedom and the absence of memory safety violations. The kernel makes use of the

AutoCorres tool for translating C code into a higher-level monadic language embedded

in the Isabelle/HOL theorem prover [GLAK14]. AutoCorres generates proofs that the

translation is sound with respect to the semantics of the source C program. Another no-

table C verification project is the CompCert verified compiler by Xavier Leroy [Ler09],

which is capable of compiling and optimising C code to assembly whilst preserving its

semantics. However, CompCert does not guarantee the absence of undefined behaviour

in compiled programs, and can only detect undefined behaviour in code that doesn’t

perform I/O, by dynamically interpreting it.

In this thesis we are concerned with the formal foundations for a possible successor to

C. Whether or not this approach will result in simpler and less labour-intensive software

verification is an open question. However, we hope that by starting afresh, and using

types to enforce useful invariants, a new language for low-level software verification can

emerge.

2.3 Overview of Linear and Affine Typing

Linear, affine and uniqueness typing are closely-related features of type systems that

enforce rules about the number of times values may be used and referenced. These

restrictions are motivated by several desirable properties that can be obtained by en-

forcing them. The Clean programming language (introduced in [BvEvLP87]) uses

uniqueness typing to ensure that values in memory have at most one reference to them,

thus enabling destructive updates whilst preserving referential transparency. The Rust

programming language [Moz15] uses uniqueness typing to track and free heap-allocated

memory, thus allowing it to achieve memory safety without garbage collection. This

makes it suitable for writing systems software where a garbage collector isn’t available,

like a garbage collector itself, or an operating system.

At their core, all of these systems enforce their constraints using typing rules derived

4

Michael Alexander Sproul A Library Based Approach to the Verification of
Languages with Linear Types

from linear logic [Gir87]. To get a feel for linear logic, we first turn our attention to the

linear lambda calculus. We then continue by discussing more complex languages and

the techniques used in their mechanical formalisation.

2.4 The Linear Lambda Calculus

For our presentation of the linear lambda calculus we follow the work of Plotkin and

Barber [Bar96] on Dual Intuitionistic Linear Logic (DILL). First, the syntax for vari-

ables, types and terms:

x, y ∈ Vars

A,B ::= I | A⊗B | A(B | !A

t, u ::= x | ∗ | let ∗ be t in u | t⊗ u | let x⊗ y : A⊗B be t in u |

λx : A. t | (t u) | !t | let !x : A be t in u

The meta-variables x and y range over a countably infinite set of variables, Vars. Meta-

variables A and B range over types, and t and u range over terms. The core constructs

of the language are those of the lambda calculus: variables (x), abstractions (λx : A. t)

and applications (t u). We introduce the other constructs through the typing rules of

the language.

We write the judgement Γ; ∆ ` t : A to denote that a term t has type A relative to two

typing environments Γ and ∆ which record the types of free variables in t. The two

typing environments are the origin of the name Dual Intuitionistic Linear Logic, and

are part of DILL’s mechanism for differentiating linear and non-linear values.

Typing environments can have many representations, and for the purposes of precise

mechanical formalisation this will become very important (see §3.5). In “semi-formal”

contexts, including Barber’s presentation of DILL, the environments are defined to be

sequences of variable-type pairs x0 : A0, x1 : A1, . . . such that no variable appears more

than once. Comma-separated environments like (Γ, x : A) and (∆1,∆2) are understood

to be the concatenation of two environments with disjoint sets of variables.

5

A Library Based Approach to the Verification of Lan-
guages with Linear Types

Michael Alexander Sproul

The first environment, Γ, records the types of non-linear intuitionistic variables. In

contrast, the second environment ∆ records the types of linear variables which must be

used exactly once. Although a language with just linear values is easily conceivable, it

is both more practical and flexible to allow non-linear values to exist alongside linear

ones. Trivially copyable values like integers are well-suited to being non-linear in a

linear language.

To define which typing judgements are well-formed, we use inference rules in the style

of natural deduction:

Γ, x : A;∅ ` x : A
(Int-Var)

Γ;x : A ` x : A
(Lin-Var)

Γ;∅ ` ∗ : I
(Unit-I)

Γ; ∆1 ` t : I Γ; ∆2 ` u : A

Γ; ∆1,∆2 ` let ∗ be t in u : A
(Unit-E)

Γ; ∆1 ` t : A Γ; ∆2 ` u : B

Γ; ∆1,∆2 ` t⊗ u : A⊗B (⊗-I)
Γ; ∆1 ` u : A⊗B Γ; ∆2, x : A, y : B ` t : C

Γ; ∆1,∆2 ` let x⊗ y : A⊗B be u in t : C
(⊗-E)

Γ; ∆, x : A ` t : B

Γ; ∆ ` (λx : A.t) : A(B
((-I)

Γ; ∆1 ` u : A(B Γ; ∆2 ` t : A

Γ; ∆1,∆2 ` (u t) : B
((-E)

Γ;∅ ` t : A

Γ;∅ ` !t : !A
(!-I)

Γ; ∆1 ` u : !A Γ, x : A; ∆2 ` t : B

Γ; ∆1,∆2 ` let !x : A be u in t : B
(!-E)

Figure 2.1: Typing Rules for DILL linear lambda calculus

There are two rules for typing variables, corresponding to intuitionistic (Int-Var) and

linear variables (Lin-Var) respectively. In both cases we allow extra intuitionistic vari-

ables to be present in the environment, as we are free to ignore them. Conversely,

linear variables must be used exactly once, so there can’t be any present when typing

a non-linear variable, and there can’t be any extra ones present when typing a linear

variable. Hence the linear contexts for the two rules are ∅ and x : A respectively.

The unit type, I, is inhabited by a single term ∗. The term let ∗ be t in u allows

for the elimination of any term t of type I, as shown by the rule (Unit-E). Every

6

Michael Alexander Sproul A Library Based Approach to the Verification of
Languages with Linear Types

type constructor has an introduction rule and an elimination rule, suffixed -I and -E

respectively.

The product type A ⊗ B represents a pair of values and is inhabited by terms of the

form t ⊗ u if t : A and u : B, as demonstrated by its introduction rule (⊗-I). In order

to guarantee that linear variables are used exactly once in t⊗ u, it is required that the

linear context (∆1,∆2) is the result of joining the two variable-disjoint linear contexts

of t and u. Alternately, we can view this as the environment for t⊗ u being split into

the two environments for t and u. This is the context splitting operation that is at

the core of many substructural type systems, and is the focus of our Coq library. Note

that we use both the words environment and context to refer to typing environments.

The elimination rule for products (⊗-E) also makes use of context splitting to ensure

linearity. The rule states that if we have a term u : A ⊗ B and a term t : C that is

well-typed with free variables x : A and y : B, then the expression that makes the

components of u available as x and y in t also has type C. DILL uses the notation let

x⊗ y : A⊗B be u in t for this expression, which is equivalent to let (x, y) = u in

t in Haskell syntax. The intuitionistic context Γ from the let expression is available

to both premises, whilst the linear context (∆1,∆2) is split so that some variables are

used to type u (∆1), and others are used to type t in combination with the components

of u (∆2, x : A, y : B).

The lollipop type, A(B, is the type of functions that consume a linear value of type

A and produce a value of type B. As we shall see shortly, regular functions A → B

that don’t destructively consume their input can be encoded as !A (B. Introducing

a new value of lollipop type is done by writing a λ-abstraction, (λx : A. t), which is

well-typed only if its body t is well-typed under a linear environment extended with

the type of the binder: ∆, x : A. This rule, ((-I) is identical to the rule for typing

λ-abstractions in the Simply-Typed Lambda Calculus (STLC) except for the fact that

it places the binder in a linear context.

The elimination rule for lollipop types ((-E) uses a function application (u t), where

u : A (B and t : A. The context splitting is identical to the context splitting in the

7

A Library Based Approach to the Verification of Lan-
guages with Linear Types

Michael Alexander Sproul

(⊗-I) rule, with the linear context for (u t) splitting into two sub-contexts for each of

the sub-expressions u and t.

Finally we come to the bang type, !A, which allows the embedding of intuitionistic

terms within the language. The introduction rule for bang types, (!-I), states that if a

term t can be assigned the type A without reference to any linear variables, then we

can construct a term !t : !A which represents a duplicable version of t. Intuitively, this

makes sense, as we can refer to the variables in the intuitionistic context for t as many

times as we like whilst creating copies via !t.

To understand how terms of bang type become usable as duplicates requires consid-

eration of the associated elimination rule, (!-E). This rule allows a term u : !A to be

destructured so that its “inner” term becomes available in the non-linear context as

re-usable assumption x : A. If u : !A was determined using the introduction rule for

bang types such that u = !v for some v, then the let binding let !x : A be u in t binds

a new name x to v and makes it available in the intuitionistic context for t.

Alternatively, it’s possible for a term u to have type !A without an application of the

bang introduction rule. This occurs, for example, when writing a function to duplicate

its input as a pair. Terms of linear type can’t be duplicated, so the argument to this

function must have type !A for some type A. We must then use a bang let-binding, and

(!-E) to bring a duplicable version of the binder variable into the intuitionistic context.

The term we would like to type is therefore: (λx : !A. let !y : A be x in (!y ⊗ !y)). The

typing derivation is:

∅;x : !A ` x : !A
(Lin-Var)

y : A;∅ ` y : A
(Int-Var)

y : A;∅ ` !y : !A
(!-I)

y : A;∅ ` y : A
(Int-Var)

y : A;∅ ` !y : !A
(!-I)

y : A;∅ ` (!y ⊗ !y) : (!A⊗ !A)
(⊗-I)

∅;x : !A ` let !y : A be x in (!y ⊗ !y) : (!A⊗ !A)
(!-E)

∅;∅ ` (λx : !A. let !y : A be x in (!y ⊗ !y)) : !A((!A⊗ !A)
((-I)

Note how we rely on (Lin-Var), rather than the bang introduction rule (!-I), to form

the judgement ∅;x : !A ` x : !A. We also see the bang elimination rule in action here,

8

Michael Alexander Sproul A Library Based Approach to the Verification of
Languages with Linear Types

adding the new name y for x into the intuitionistic context for !y ⊗ !y.

In the Simply-Typed Lambda Calculus, an equivalent duplication function would have

type A→ (A⊗A). In fact, it is possible to embed all intuitionistic (STLC) terms and

types in linear logic using reasoning similar to the above [Bar96]. Intuitionistic types A

can be translated to duplicable bang types !A, and functions A→ B can be translated

to !A(B.

2.4.1 Structural Rules

Philip Wadler gives a similar typing derivation for a duplication function in his 1993

presentation of linear logic [Wad93], although his system differs from DILL in a few

key ways.

In Wadler’s system, a single typing environment is used, containing both linear as-

sumptions of the form 〈x : A〉 and intuitionistic ones of the form [x : A]. These are

conceptually equivalent to assumptions in the respective linear and intuitionistic con-

texts of DILL. For rules that require the context to consist entirely of intuitionistic

assumptions, Wadler uses the notation [Γ], which is approximately equivalent to a Γ;∅

pair of contexts in DILL. When formalising linear logic with an interactive theorem

prover such as Coq, the dual-context approach taken by DILL is preferable to Wadler’s

approach because of the clear and forced separation of the two worlds – intuitionistic

and linear. For example, Wadler’s system would require a Coq data-type to differen-

tiate the two types of assumptions, and an additional predicate to state if a context

contains only intuitionistic assumptions. A further difference between the two systems

is that Wadler’s renders the structural rules that lend their name to substructural type

systems explicit.

To save writing the entire set of typing rules, which are very similar to the ones for

DILL already presented and the upcoming rules for L3, we cherry-pick a few of the

structural rules to demonstrate our point, and rely on the approximate translation

described above and the original paper [Wad93] to provide the full details.

9

A Library Based Approach to the Verification of Lan-
guages with Linear Types

Michael Alexander Sproul

Unlike DILL, both kinds of variables in Wadler’s LLC require their typing contexts to

be empty except for the variable of interest:

[x : A] ` x : A
(Int-Var’) 〈x : A〉 ` x : A

(Lin-Var’)

Duplication and discarding of intuitionistic variables is then enabled by two structural

rules, Contraction and Weakening:

Γ, [y : A], [z : A] ` u : B

Γ, [x : A] ` u[x/y, x/z] : B
(Contraction) Γ ` t : B

Γ, [x : A] ` t : B
(Weakening)

Contraction makes use of substitutions (u[x/y, x/z]) to form terms with two occurrences

of the intuitionistic variable x. Weakening allows a non-vital variable and type to be

introduced from nowhere, or, when reasoning backwards, it allows an unused variable

to be discarded in order to type a sub-term.

In DILL the contraction and weakening rules for intuitionistic variables are implicit

in how the intuitionistic context is managed – there can be additional intuitionistic

assumptions present when typing variables (weakening), and intuitionistic assumptions

can be duplicated freely (contraction). In contrast, in Wadler’s system all duplication

and discarding happens via (Contraction) and (Weakening). With the exception of the

structural rules, Wadler’s typing contexts behave entirely linearly, and are split in the

same way linear contexts in DILL are split.

If the use of structural rules is restricted, we get a substructural type system. Without

contraction, variables can only appear once in a term. Without weakening, all variables

in the context must be used in the term. Banning both contraction and weakening results

in a linear type system where variables must be used exactly once. The systems

we’ve seen so far, DILL and Wadler’s LLC, are both linear in that contraction and

weakening are banned for the non-intuitionistic terms of the language. Under the

10

Michael Alexander Sproul A Library Based Approach to the Verification of
Languages with Linear Types

Curry-Howard correspondence, linear type systems correspond to linear logic, which

was first introduced by Girard [Gir87].

If contraction is restricted but weakening is allowed, the result is an affine type system,

corresponding to an affine logic (Grishin, 1974, Russian; recently [TP11]). Variables in

affine type systems can be thrown away but not duplicated, so every variable is used

at most once.

2.4.2 Summary of the Linear Lambda Calculus

In this section we’ve seen how typing rules can be used to enforce constraints on the

use of variables, by examining Dual Intuitionistic Linear Logic. We have seen that

intuitionistic terms can be embedded in substructural languages via bang types and

the careful management of typing contexts. The importance of context splitting to

divide linear assumptions between sub-terms has also been highlighted. In the next

sections we examine more complex calculi that build on the linear lambda calculus to

model useful programming constructs like mutation and memory allocation.

2.5 Operational Semantics and Type Soundness

Up until this point, we have described only the syntax and static semantics (typing

rules) of linearly-typed programming languages, with only vague notions of how terms

behave dynamically at run-time. To now describe the dynamic behaviour of languages

we turn to structural operational semantics, a mathematical formalism for the step-wise

evaluation of terms, also known as small-step semantics.

To define the small-step semantics of a language, we inductively define a relation on

pairs of terms, denoted t ⇒ t′. The relation needn’t be strictly on pairs of terms, and

many small-step semantics also thread through a global state or store, σ, so that the

stepping relation ends up being: (σ, t) ⇒ (σ′, t′). In small-step semantics each step

t⇒ t′ is intended to represent a single step of the computation, in contrast to big-step

11

A Library Based Approach to the Verification of Lan-
guages with Linear Types

Michael Alexander Sproul

natural semantics where the values that terms evaluate to are stated directly, as in

t ⇓ v [Gun92].

The β-rule of the λ-calculus can be stated for DILL as:

(λx : A. t) v ⇒ t[v/x]
(β)

Here we use the variable v to indicate a value of the language. Values are terms that

are fully evaluated according to the small-step semantics [Pie02] – formally, they are

terms that are in normal form with respect to the stepping relation (⇒). By specifying

that β-reduction can only occur if the argument is a value we have fixed the reduction

strategy to call-by-value. Other reduction strategies can be similarly encoded, but we

consider only call-by-value here, as it’s simple and well-suited to low-level programming,

as evidenced by the literate surveyed.

Type systems for programming languages are said to be sound if well-typed programs

are guaranteed not to get stuck when evaluated according to the language’s operational

semantics. Stated formally, the soundness lemma is:

∅ ` e : τ e⇒∗ e′
(∃e′′. e′ ⇒ e′′) ∨ e′ is a value

(Type Soundness)

The notation (⇒∗) represents zero or more applications of (⇒). Our definition of

stuckness states that a term e′ is not stuck if either it can step to some other term e′′,

or it is a value of the language.

Soundness can be proved via two supporting lemmas called progress and preservation,

using an approach introduced by Wright and Felleisen [WF94].

The progress property holds if all well-typed closed terms are either values, or can take

a step.

∅ ` e : τ

(∃e′. e⇒ e′) ∨ e is a value
(Progress)

12

Michael Alexander Sproul A Library Based Approach to the Verification of
Languages with Linear Types

The preservation, or subject reduction, property holds if well-typed terms retain their

type during evaluation.

∅ ` e : τ e⇒ e′

∅ ` e′ : τ
(Preservation)

Our proof-of-concept Coq formalisation of a linear lambda calculus makes use of progress

and preservation lemmas to establish type soundness. There are other formalisms and

techniques that can be used to demonstrate soundness and similar properties, but we

restrict our attention here to syntactic proofs by progress and preservation.

2.6 The Linear Language with Locations, L3

We now turn our attention to The Linear Language with Locations, L3 [MAF05], which

extends the linear lambda calculus with strong destructive updates and explicit memory

management. In a language with references or pointers, a destructive update is a re-

assignment of a value pointed to by a pointer. A strong destructive update is one that

may also change the type of the value pointed to by the pointer. Destructive updates

are a common feature of imperative languages, and their addition to the linear lambda

calculus brings us a step closer to a sound and usable programming language for low-

level programming. L3 itself is not such a language, but could serve as a foundation

for a language with more features (e.g. polymorphism). Its designers created it as

a foundational calculus for strong updates, which can be used to model type-varying

CPU registers.

As for Dual Intuitionistic Linear Logic, we begin with a description of the syntax of

the language, in Figure 2.2.

Many of the terms and types have the same meaning as in DILL. Functions, variables,

products and the unit value are all the same. L3’s complete specification also includes

small-step operational semantics, for which the set of values denoted by meta-variable

v are normal forms.

13

A Library Based Approach to the Verification of Lan-
guages with Linear Types

Michael Alexander Sproul

x, y ∈ Vars

l ∈ LocConsts

ρ ∈ LocVars

η ::= l | ρ

A ::= I | A⊗B | A(B | !A | Ptr η | Cap η A | ∀ρ. A | ∃ρ. A

t, u ::= ∗ | let ∗ be t in u |

t⊗ u | let x⊗ y be t in u |

x | λx. t | (t u) |

!v | let !x be t in u | dupl t | drop t |

ptr l | cap l | new t | free t | swap t u

Λρ. t | t[η] | pη, tq | let pρ, xq be t in u

v ::= ∗ | v1 ⊗ v2 | x | λx. t | !v | ptr l | cap l | Λρ. t | pη, vq

Figure 2.2: Syntax for The Linear Language with Locations

The main addition is the set of primitives for allocating and managing memory: new t,

free t and swap t u. Each piece of memory allocated is at a constant location l, drawn

from a set of location constants LocConsts which can be considered memory addresses.

The precise locations are hidden from the programmer by existential types ∃ρ. A, for

location variables ρ ∈ LocVars.

L3 is typical of other modern calculi in that it separates resources like pointers from

capabilities to use resources. A pointer value ptr l : Ptr l is unusable without a

capability to read from and write to it: cap l : Cap l A. Capabilities are linear values,

whilst pointers are duplicable. To see how this is enforced, and the destructive updates

that it enables, we now considering the typing rules for L3, as in Figures 2.3 and 2.4.

14

Michael Alexander Sproul A Library Based Approach to the Verification of
Languages with Linear Types

∆;∅ ` ∗ : I (Unit-I)

∆; Γ1 ` t : I ∆; Γ2 ` u : A

∆; Γ1,Γ2 ` let ∗ be t in u : A
(Unit-E)

FLV (A) ⊆ ∆

∆;x : A ` x : A
(Var)

∆; Γ1 ` t : A ∆; Γ2 ` u : B

∆; Γ1,Γ2 ` t⊗ u : A⊗B (⊗-I)

∆; Γ1 ` t : A⊗B ∆; Γ2, x1 : A, x2 : B ` u : C

∆; Γ1,Γ2 ` let x1 ⊗ x2 be t in u : C
(⊗-E)

∆; Γ, x : A ` t : B

∆; Γ ` λx. t : A(B
((-I)

∆; Γ1 ` t : A(B ∆; Γ2 ` u : A

∆; Γ1,Γ2 ` (t u) : B
((-E)

∆; !Γ ` v : A

∆; !Γ ` !v : !A
(!-I)

∆; Γ1 ` t : !A ∆; Γ2, x : A ` u : B

∆; Γ1,Γ2 ` let !x be t in u : B
(!-E)

∆; Γ ` t : !A

∆; Γ ` dupl t : !A⊗ !A
(Dupl)

∆; Γ ` t : !A

∆; Γ ` drop t : I (Drop)

Figure 2.3: Typing Rules for The Linear Language with Locations (Part I)

15

A Library Based Approach to the Verification of Lan-
guages with Linear Types

Michael Alexander Sproul

∆; Γ ` t : A

∆; Γ ` new t : ∃ρ. Cap ρ A⊗ !(Ptr ρ)
(New)

∆; Γ ` t : ∃ρ. Cap ρ A⊗ !(Ptr ρ)

∆; Γ ` free t : ∃ρ. A (Free)

∆; Γ1 ` t : Ptr ρ ∆; Γ2 ` u : (Cap ρ A)⊗B
∆; Γ1,Γ2 ` swap t u : (Cap ρ B)⊗A (Swap)

∆, ρ; Γ ` t : A

∆; Γ ` Λρ. t : ∀ρ. A (LFun)

∆; Γ ` t : ∀ρ. A ρ′ ∈ ∆

∆; Γ ` t[ρ′] : A[ρ′/ρ]
(LApp)

ρ′ ∈ ∆ ∆; Γ ` t : A[ρ′/ρ]

∆; Γ ` pρ′, tq : ∃ρ. A
(LPack)

∆; Γ1 ` t : ∃ρ. A FLV (B) ⊆ ∆ ∆, ρ; Γ2, x : A ` u : B

∆; Γ1,Γ2 ` let pρ, xq be t in u : B
(Let-LPack)

Figure 2.4: Typing Rules for The Linear Language with Locations (Part II)

L3’s typing judgements include two contexts, one for locations (∆) and another for

types (Γ), as in ∆; Γ ` t : A. All variables and their types are stored in one typing

context, which makes L3 more similar to Wadler’s LLC than DILL, despite the syntactic

similarity. The location context ∆ is a sequence of location variables that are currently

in scope, like variables in a typing context without the type information: ∆ ::= ∅ | ∆, ρ.

As in DILL, context splitting is used extensively to ensure that each variable appears

exactly once in a term. The typing rules for unit types, product types (⊗) and functions

(() are almost identical to the rules for their counterparts in Wadler’s LLC, and DILL,

modulo the different number of contexts.

The rule for variables, (Var), is similar to Wadler’s, except that the free location vari-

ables of the variable’s type, FLV (A), must be present in the location context. Another

16

Michael Alexander Sproul A Library Based Approach to the Verification of
Languages with Linear Types

interesting difference is that L3 has only one rule for variables, rather than two like

DILL and Wadler’s LLC. The reason for this is that L3 doesn’t differentiate between

linear and intuitionistic assumptions. Wadler motivates the two types of assumptions

by giving an example of how the proof reduction rule equivalent to β-reduction becomes

unsound if contraction and weakening are allowed for assumptions of the form 〈x : !A〉

(or just x : !A in L3 syntax). This doesn’t pose a problem to L3 because there are no

explicit contraction and weakening rules – the same functionality is instead provided

by dupl t and drop t primitives. As a result, a variable is considered intuitionistic

(and duplicable) if it has type !A for some A.

The drop and dupl primitives form part of L3’s handling of intuitionistic values using

the bang type. The introduction rule for bang types is almost the same as in DILL,

except that only values v are permitted, and an intuitionistic context !Γ is now just one

where all assumptions are of the form x : !A. The elimination rule is also similar, except

that the context which the newly bound variable is introduced into is linear, which

means the variable can only be used once after the rule is applied. The duplication

primitive mitigates this restriction by explicitly transforming a value of type !A into a

pair of values with the same type, !A⊗ !A. The components of the duplicate pair can

then be given names and introduced into the typing context by the elimination rule for

products, (⊗-E). This duplicating of intuitionistic values is equivalent to a contraction

typing rule.

Further, there is an equivalent to a weakening rule for intuitionistic terms, in the form

of the drop primitive, which allows a term to be discarded. Given a term t with type

!A, dropping it results in a term drop t with type unit I.

The remaining typing rules relate to L3’s primitives for memory allocation. By the

(New) rule, we see that a term t can be assigned a reference and accompanying capa-

bility by the new t term. The type of new t is an existential type ∃ρ. (Cap ρ A ⊗

!(Ptr ρ)), which hides the precise location from the programmer. As can be seen from

the (Let-LPack) rule, this existential package can be unpacked by a let pρ, xq be t in u

term, causing the location ρ to become available in the location context, and a variable

17

A Library Based Approach to the Verification of Lan-
guages with Linear Types

Michael Alexander Sproul

for the pointer and capability to become available in the typing context.

Note that the capabilities produced by the new construct have linear type Cap ρ A,

while the pointers themselves are non-linear and duplicable !(Ptr l). Further, the type

of the pointer doesn’t mention the type of the value it points to. These two properties

enable strong destructive updates, as the unique capability can be passed to the swap

construct, which replaces the value at a location and evaluates to a pair containing the

old value and a capability with the new value’s type. The (Swap) rule demonstrates

this.

Finally, the free primitive, which is responsible for de-allocating a piece of memory

allocated with new. A term free t is well-typed if the term t is a capability-and-

pointer package as produced by new. The value of free t after de-allocation is an

existential package containing the value that was stored at the location, with type

∃ρ. A.

The run-time interpretations of the above operations are provided by a small-step

operational semantics that makes use of a store σ mapping locations l to closed values

v. We display only a selection of the reduction rules, which are lifted to small-step

operational semantics by evaluation contexts. For the full set of reduction rules and

evaluation contexts, see the technical report accompanying L3 [MAF04].

(new) (σ,new v)⇒ (σ] {l 7→ v}, pl, cap l ⊗ !(ptr l)q)

(free) (σ] {l 7→ v}, free pl, cap l ⊗ !(ptr l)q)⇒ (σ, pl, vq)

(swap) (σ] {l 7→ v1}, swap (ptr l) (cap l ⊗ v2))⇒ (σ] {l 7→ v2}, cap l ⊗ v1)

(let-lpack) (σ, let pρ, xq be pl, vq in t)⇒ (σ, t[l/ρ][v/x])

These rules codify the intuition for the constructs given above. For example, (new)

introduces a new location l into the store, mapped to the appropriate value, whilst (free)

performs the inverse. Capabilities are threaded throughout to ensure that exclusive

rights to update the memory location are held.

For their proof of soundness, the L3 authors don’t use a syntactic proof. Instead, they

18

Michael Alexander Sproul A Library Based Approach to the Verification of
Languages with Linear Types

provide a semantic interpretation of the types and prove that well-typed expressions

correspond to true logical statements about the interpretations of the types. A con-

sequence of this approach is that the typing rules don’t contain rules for intermediate

values like cap l, which makes a syntactic proof more complicated, as discussed in §4.2.

2.7 Uniqueness Typing

Although linear and affine type theory capture the essence of uniquely referenced values,

they are insufficient to describe the concept of uniqueness as it appears in languages

like Clean. In his 2007 paper, de Vries [dVPA07] notes that terms of a unique type

should be guaranteed to never have been shared, which is sufficient to guarantee a unique

pointer at runtime. In contrast, terms of linear (or affine) type are guaranteed not to

be shared in the future, which is insufficient to guarantee a unique pointer.

The distinctness of linearity and uniqueness is highlighted by the contrast between

dereliction and the rule that we’ll refer to as uniqueness removal present in Clean’s

type system. In a linearly typed language, dereliction refers to the ability to convert

intuitionistic values into linear ones, for example by constructing a function with type

(!A(A). In DILL, the following dereliction function is well-typed:

∅;∅ ` (λx : !A. let !y : A be x in y) : !A(A

Now, imagine that we treat linear terms as unique, and intuitionistic ones as non-

unique. As noted by Edsko de Vries [dV08], the dereliction function above is not

sound under this proposed equivalence. The “unique” value resulting from dereliction

is not necessarily unique because other shared references (intuitionistic values of type

!A) may still exist.

Further, the uniqueness removal rule in Clean allows unique values to be transformed

into non-unique ones. In a linear context, this is analogous to writing a function with

type A (!A, which violates the guarantee that linear variables are only used once,

and is impossible in DILL. A unique value may sacrifice its uniqueness to become

19

A Library Based Approach to the Verification of Lan-
guages with Linear Types

Michael Alexander Sproul

shared, but a linear value which models the existence of a single resource should not be

transformed into an unlimited supply of that resource. Further note that if uniqueness

is to be exploited to make garbage collection unnecessary – as in the case of Rust – then

the uniqueness removal rule is undesirable as it prevents values from having a unique

owner.

Due to the non-equivalence of linearity and uniqueness, de Vries constructed a distinct

set of semantics and typing rules to model Clean’s type system [dVPA07].

One key component of his approach is the use of the kind (type of types) system to track

uniqueness and non-uniqueness. As in Haskell, de Vries’ uniqueness system includes a

kind for data (*) which is the kind of all inhabited types (and Void). In addition, there

is a uniqueness kind U inhabited by two types • and × representing uniqueness and

non-uniqueness respectively. A third kind, T is the kind of base types (like Int). These

kinds are brought together by a type constructor Attr ::k T → U → ∗ which applies

a uniqueness attribute to a base type to form a type that is inhabited. For example,

Attr • Int or Int• is the type of uniquely referenced integers.

The other main technique employed by de Vries’ model is the use of arbitrary boolean

expressions as uniqueness attributes, with • as true and × as false. Clean’s type sys-

tem allows uniqueness polymorphism, which results in constraint relationships between

uniqueness variables, which are represented in de Vries’ system as simple boolean ex-

pressions that can be handled by a standard unification algorithm.

Despite uniqueness being distinct from linearity, Edsko’s formalism also makes use of

a context splitting operation to enforce constraints on the usage of variables. It differs

slightly from the standard approach in that non-unique variables can be split onto both

sides. A discussion about expressing de Vries’ context splitting in terms of the standard

approach is given in §4.1.

Finally, de Vries’ work includes the only known mechanical proof of type soundness

for a type system similar to Clean’s. The proof is syntactic, and is encoded in Coq.

It makes use of the locally nameless approach to variable naming that is discussed in

20

Michael Alexander Sproul A Library Based Approach to the Verification of
Languages with Linear Types

§2.11.2.

2.8 Systems of Capabilities

2.8.1 Cyclone

Several systems extend and generalise the capability-based approach employed in L3.

Fluet, Morrisett and Ahmed followed up their paper on L3 with a region-based sys-

tem that borrows many ideas from L3, called λrgnUL [FMA06]. Notably, it makes use

of linear capabilities to provide safe access to dynamic regions, which are first-class

abstractions for the allocation of memory. Dynamic regions extend simpler lexical re-

gions by allowing regions to exist independent of lexical scopes. Accompanying the

λrgnUL paper is a mechanised proof of type soundness using the Twelf proof assistant

[PS99].

The same authors are also responsible for the Cyclone project [GHJM05], which ex-

tends the C programming language with regions and uniqueness typing in order to

achieve safe memory management without garbage collection or manual intervention.

The λrgnUL calculus models Cyclone’s core features, and there exists a translation from

Cyclone to λrgnUL via an intermediate language FRGN which makes use of a gener-

alised ST monad [FMA06, FM04]. No mechanised proof of correctness for this work

exists, although an earlier semi-formal proof of type soundness for Cyclone [JMG+01] is

structured in a way that looks amenable to mechanised verification. On their webpage

[GHJ+15], the creators of Cyclone note that work on the project has stopped, with

many of the ideas living on in Rust. Future formalisations of Rust can hopefully make

use of this work.

2.8.2 Pottier’s Type-and-Capability System with Hidden State

A mechanical formalisation for a system even more similar to L3 than λrgnUL is given

in a 2013 article by François Pottier [Pot13a]. Pottier’s system, SSPHS , uses affine

21

A Library Based Approach to the Verification of Lan-
guages with Linear Types

Michael Alexander Sproul

capabilities in the style of L3, but adds polymorphism and support for hidden state.

Hidden state allows an object to completely conceal mutable internal state from its

clients. Pottier gives a memory manager as an example where such a feature is useful

– clients care only about the memory allocated or de-allocated, and not about internal

data-structures modified in the process. Hidden state is realised via a typing rule called

the anti-frame rule, which makes terms with hidden state subtypes of the type sans

hidden state.

The concept of hidden state is distinct from, yet related to, the existential types that

L3 uses to conceal exact locations. SSPHS also employs hidden state for the purpose

of general resource management, rather than just memory management. The ability to

express memory management in the language obsoletes L3 and similar systems’ explicit

rules for memory management, which Pottier describes as “magic” [Pot13a].

All of L3’s features, including strong updates, are covered by Pottier’s system. It

also subsumes λrgnUL , with support for polymorphism and regions. Unlike previous

systems it also guarantees the runtime-irrelevance of capabilities, which are proved to

be erasable.

For context splitting, SSPHS makes use of a multiplicity environment which records

the number of available copies of each variable. Each variable is marked as having 0, 1

or ∞ copies available, encoding unavailable linear variables, available linear variables

and intuitionistic variables respectively. Pottier exploits the fact that multiplicity en-

vironments form a separation algebra, and unifies their treatment with the treatment

of general resources (including regions). In this system, context splitting is the division

of a context such that the number of copies of each variable is preserved.

Pottier’s formalisation is done within the Coq proof assistant and makes use of de

Bruijn indices for variable binding (a pre-cursor to his DbLib library, discussed in

§2.11.2). The formalisation consists of 20,000 lines of Coq source and follows the

syntactic approach to proving type soundness via progress and preservation. Pottier

notes that the formalisation took around 6 months to complete.

22

Michael Alexander Sproul A Library Based Approach to the Verification of
Languages with Linear Types

2.8.3 Mezzo

Together with Thibaut Balabonski and Jonathan Protzenko, Pottier is also responsible

for the Mezzo programming language and its associated Coq formalisation [BPP14].

Mezzo differs from SSPHS and λrgnUL in that it is designed to be high-level and ex-

pressive. Like the other systems examined, its system of ownership is based around

linear permissions, which allow programmers to design diverse usage protocols for func-

tions and data. Mezzo’s model of concurrency leverages ownership to guarantee that

well-typed programs do not contain data-races, a property that is also formalised in

Coq.

Mezzo includes mechanisms for deferring permissions checks to runtime in order to

gain more expressive power, at the cost of some synchronisation overhead. Its surface

syntax is also designed to be more minimal than languages like L3 which favour ex-

plicit annotations. Both of these aspects reflect Mezzo’s ambition to be a user-facing

programming language that provides control over resources.

The prototypical compiler for Mezzo uses untyped OCaml as its target language and as

such requires garbage collection at runtime. Further, due to OCaml’s lack of parallelism,

concurrent and race-free Mezzo programs are currently unable to take advantage of

multiple cores. One can imagine further work to compile Mezzo to a low-level language

with similar semantics, in order to take advantage of its full feature set.

Mezzo’s Coq formalisation consists of 14,000 lines of code and makes use of a 2000 line

library called DbLib for handling de Bruijn indices. Like the proof for SSPHS , it uses

progress and preservation to prove type soundness.

2.9 Linear Dependent Types

Conor McBride’s recent work on combining linear and dependent typing [McB16] is

strikingly similar to Pottier’s SSPHS in its treatment of typing contexts. In Conor’s

system, variables in the context are annotated by the number of occurrences available

23

A Library Based Approach to the Verification of Lan-
guages with Linear Types

Michael Alexander Sproul

at run-time. Linear variables are annotated with a 1 if available, or a 0 if they have

already been used in a neighbouring part of the term. This allows types to depend upon

linear values, by referring to the 0 available copies if necessary – a process Conor calls

contemplation. As in Pottier’s work, an infinity ∞ annotation is used for intuitionistic

variables, and context splitting is the resource-preserving division of a context into two

pieces.

2.10 Typed Assembly Languages and Trustworthy Com-

pilers

Strong updates can be used to model the storage of type-distinct values in a single reg-

ister through-out program execution. As such, low-level calculi like L3 and λrgnUL are

conceptually linked to typed assembly languages (TALs), which extend regular assembly

languages with type annotations.

Well-typed TAL programs typically guarantee memory safety given an axiomatisation

of a machine architecture. In the TALx86 [MWCG99, CGG+99] system, blocks are

annotated with pre-conditions that place requirements on the types of registers. This

approach to typing is substantially different from the operational semantics and in-

ductive typing judgements used to describe the semantics of the other languages we’ve

surveyed (L3, λrgnUL , SSPHS). However, recent work by Amal Ahmed et al. has suc-

cessfully resulted in a more traditional model for typed assembly languages [AAR+10].

This model still differs from the others considered in this thesis in that it uses denota-

tional semantics, Hoare logic and several interconnecting layers in order to minimise the

number of axioms required. Ahmed’s paper includes a Twelf formalisation of soundness

for the TAL semantic framework and an example language.

Another take on the typed assembly language concept is Bedrock from Adam Chlipala’s

research group [Chl11]. Bedrock uses a domain-specific assembly language embedded

within Coq to express low-level programs. Aided by user-provided annotations, Bedrock

can prove properties about these assembly programs in an automated way using custom

24

Michael Alexander Sproul A Library Based Approach to the Verification of
Languages with Linear Types

Coq tactics. The block annotations resemble the block pre-conditions of TALx86.

More broadly it is worth noting the contribution of the CompCert [Ler09] project to

program verification. Through a series of semantics-preserving translations through

intermediate languages, CompCert compiles a variant of C to multiple assembly lan-

guages. CompCert is programmed and verified in Coq. Verification of programs written

in a low-level linearly-typed language could use parts of CompCert, perhaps with a lan-

guage like L3 or SSPHS as an intermediate language.

2.11 Variable Naming and Binding

One problem that arises frequently in the formalisation of language semantics is that of

capture-avoiding substitution. Substitution operations, whereby a value is substituted

for a variable in a term, form the core computational component of the operational

semantics in many languages. In the simply-typed (and untyped) lambda calculus,

the β-rule uses substitution (denoted e[v/x]) to describe the semantics of function

application:

(λx : τ. e) v =⇒β e[v/x]

The problem of variable capture, which we wish to avoid, is demonstrated by the fol-

lowing example:

(λx. λy. x+ y) y 6=⇒β (λy. y + y)

Here the parameter y is a free variable acting as a place-holder for a value in the

environment. After substitution however, the y replacing x in the abstraction body

x + y becomes bound due to the name collision between the free y and the binder y.

This altering of the meaning of terms during substitution is something we would like

to avoid.

25

A Library Based Approach to the Verification of Lan-
guages with Linear Types

Michael Alexander Sproul

One way to avoid variable capture is to forbid the substitution of any terms containing

free variables. In such a system, free variables like y are never considered values and

as such cannot be used in variable capturing substitutions. This is the approach taken

by Software Foundations [PCG+15] in formalisations of the simply-typed lambda cal-

culus and its variants. A further consequence of this approach is that globally-shared

integers or strings for variable names are sufficient to guarantee soundness. Although

it’s tempting to embrace this approach for its simplifying properties, it doesn’t help

our overall goal of creating a general framework for substructural languages, in which

substitution of open terms should be possible.

To attain capture-avoiding substitution we consider three main approaches from the

literature which all exploit the observation that the exact names of bound variables

are insignificant at the level of language formalisation. In other words, although the

names of variables may hold meaning for the authors of programs, they do not impact

the meanings of programs themselves.

2.11.1 Higher-order Abstract Syntax

When using Higher-order Abstract Syntax (HOAS) to handle variable binding, the

binders of the host language (in our case Coq) are used to represent binding constructs

in the object language. Twelf encourages use of HOAS through its light-weight syntax

(this example adapted from [Twe08]):

exp : type.

let : exp -> (exp -> exp) -> exp.

The full definition for exp is omitted, but this example demonstrates that a let-binding

in the object language, can be considered in the meta-language as a value representing

the expression being bound, and a function that accepts that bound expression as in-

put. For example, the object language expression let x = 1 + 2 in x + 3 would be

26

Michael Alexander Sproul A Library Based Approach to the Verification of
Languages with Linear Types

encoded as let (plus 1 2) ([x] plus x 3), where plus : nat -> nat -> expr

and ([x] e) is syntax for (λx. e).

This sort of encoding becomes problematic in Coq due to the difficulty of encoding types

involving negative occurrences inductively. A type appears as a negative occurrence if

it would appear below an odd number of negations in a translation to classical logic

[Pie02]. In our example, the argument to let’s higher-order function is a negative

occurrence: exp -> (exp -> exp) -> exp. An (invalid) inductive Coq definition for

the above Twelf example would be:

Inductive exp : Set :=

| exp_plus : nat -> nat -> exp

| exp_let : exp -> (exp -> exp) -> exp.

Coq rejects this definition with the error: Non strictly positive occurrence of

"exp" in "exp -> (exp -> exp) -> exp", as expected.

There are ways to simulate HOAS-like systems in Coq by either limiting the expressive-

ness and defining filters on the inductive types obtained [DFH95] or by mixing de Bruijn

indices and HOAS [CF07]. As HOAS is entirely absent from the Coq formalisations

surveyed we choose to look past it in favour of plain de Bruijn indices.

2.11.2 De Bruijn Indices and the Locally Nameless Approach

Building on the idea that the exact names of bound variables are irrelevant, de Bruijn

indices represent variables as distances from their binding occurrence [DB72]. For ex-

ample, the identity function (λx. x) is encoded as (λ. 0̂), where a natural number

annotated with a hat represents a de Bruijn index.

For terms that contain free variables, a fixed naming context is used to map free

variables to indices [Pie02]. For example, with the naming context Γ = x, y, z which

maps {x 7→ 2̂, y 7→ 1̂, z 7→ 0̂}, the term (λx. (x y) z) would be encoded as (λ. (0̂ 2̂) 1̂).

27

A Library Based Approach to the Verification of Lan-
guages with Linear Types

Michael Alexander Sproul

We can imagine the context prepended to the term as an ordered list of binders, so that

the use of z ends up being separated from its binding occurrence by 1 – the lambda.

Capture-avoiding substitution with de Bruijn indices can be defined as a recursive func-

tion that makes use of a lifting operation. Lifting a term by d conceptually renumbers

free variables for the introduction of d elements at the end of the naming context.

To avoid renumbering bound variables, a cut-off parameter c is threaded through the

computation. We denote lifting a term t by d with cut-off c as ↑dc t.

↑dc k =

k if k < c

k + d if k ≥ c

↑dc (λ. t1) = λ. ↑dc+1 t1

↑dc (t1 t2) = (↑dc t1) (↑dc t2)

With lifting defined, the definition of substitution is straight-forward – we simply lift

the free variables of the substituted term by 1 each time we move under a lambda.

k[s/j] =

s if j = k

k otherwise

(λ. t1) [s/j] = λ. t1 [(↑10 s)/(j + 1)]

(t1 t2) [s/j] = (t1 [s/j]) (t2 [s/j])

These equations for lifting and substitution are due to [Pie02].

Unlike HOAS, the recursive functions for de Bruijn indices are well-suited for use with

the Coq proof assistant. Of the Coq formalisations surveyed in our literature review,

two of the largest use de Bruijn indices. The first, SSPHS [Pot13a] defines a module

with several lemmas about substitution, while the Mezzo formalisation [BPP14] makes

use of a stand-alone library called DbLib [Pot13b]. This library uses Coq’s type-classes

28

Michael Alexander Sproul A Library Based Approach to the Verification of
Languages with Linear Types

to provide useful substitution lemmas, given the definitions of a few basic operations

on terms of the object language. Our library is an extension of DbLib, and our proof-

of-concept makes successful use of it for substitution, as discussed in §3.4.

The alternative to DbLib would have been to use Arthur Charguéraud’s Engineering

Formal Metatheory (EFMT) library [ACP+08] for binding using a locally nameless

representation. The locally nameless representation uses de Bruijn indices for bound

variables and traditional names for free variables. In his formalisation of uniqueness

typing Edsko de Vries notes that use of the LN library “meant that little of our subject

reduction proof needs to be concerned with alpha-equivalence or freshness” [dVPA07].

However, EFMT depends on Charguéraud’s TLC library for non-constructive logic

within Coq [Cha16]. We elected not to use this library, in order to keep the set of

axioms minimal and to allow us to explore constructive logic.

2.12 Summary of Mechanisation Techniques

The following table (Figure 2.5) contains a summary of languages and type systems and

their mechanisations. A tick () indicates that a property is true for a given language,

a cross (×) indicates that it is false and a dash (-) indicates that the property is not

applicable. Note that we also write “Clean” here to mean Edsko de Vries’ uniqueness

typing system [dVPA07].

29

A Library Based Approach to the Verification of Lan-
guages with Linear Types

Michael Alexander Sproul

System DU SU Cp Poly Other Mechanised? Naming

Clean [dVPA07] × × - (Coq) LN

Rust [Moz15] × - No GC × -

L3 [MAF05] × - × -

λrgnUL [FMA06] - Cyclone base (Twelf) HOAS

SSPHS [Pot13a] Hidden state (Coq) DB

Mezzo [BPP14] Data-race free (Coq) DB

Key: DU=Destructive Updates, SU=Strong Updates, Cp=Capabilities,

Poly=Polymorphism, LN=Locally Nameless, DB=De Bruijn Indices,

HOAS=Higher-order Abstract Syntax.

Figure 2.5: Summary of Mechanisation Techniques

2.13 Summary of Previous Work

In summary, previous work on the formalisation of resource-aware type systems has

culminated in the wide-spread use of capabilities. The basic ideas of linear and affine

logic have been adapted to form the core of these systems, with some extra features and

approaches mixed in (e.g. hidden state and de Vries’ use of kinds). Context splitting

plays a key role in almost all systems surveyed. The use of mechanical verification in

proofs of type soundness has gained popularity, with most recent works including a

formalisation in Coq or Twelf. Other mainstream proof assistants like Isabelle seem to

be less used in this space, but we suspect this is primarily due to the limited number

of research groups performing this kind of research, and their personal preferences.

Several capability systems mention Alias Types [SWM00] and separation logic [Rey02]

as foundational concepts, but we defer in-depth discussion of these to future work.

2.14 Evaluation Framework

In this section we describe some criteria for assessing the quality of work completed as

part of this thesis. Given our goal of creating a general Coq library for the verification

30

Michael Alexander Sproul A Library Based Approach to the Verification of
Languages with Linear Types

of linearly-typed languages, what properties should our library ideally possess? We

break the criteria into two subsections: Conceptual Goals, relating to the theoretical

content of the library, and its generality and applicability to other languages; and

Implementation Goals regarding the quality of the Coq library itself. Dividing the

criteria in this way provides broad coverage of the quality of the work whilst allowing

us to separate concerns.

2.14.1 Conceptual Goals

Our main conceptual goal is that the library be applicable and useful in the mechanical

formalisation of numerous languages with substructural typing. We say numerous,

rather than all, because new type systems with substructural influences are still being

developed [McB16]. The library should be:

1. Applicable to the formalisation of L3 and related systems.

2. Usable without modifications to the core definitions.

3. Usable with the addition of a minimal number of lemmas about the library’s

content.

Point (1) is a restatement of our main overarching goal specialised to L3, which we

argue is representative of a class of similar languages.

Point (2) expresses the ideal that the verifier of a new linearly-typed language should

be able to use the library without making bespoke modifications to the core definitions

and lemmas. Such modifications would indicate a lack of generality in the library’s

content. Usable here also means that the potential user of the library should not have

to work around the library’s inadequacies in convoluted ways.

Point (3) relates to the coverage provided by the library’s lemmas. Ideally, all of

the interesting relationships between its parts should be chronicled as lemmas within

the library. We allow some flexibility, to acknowledgement that the ideal is typically

31

A Library Based Approach to the Verification of Lan-
guages with Linear Types

Michael Alexander Sproul

very time-consuming to achieve. We believe it is reasonable for users of the library

to discover a small number of missing relationships between the library’s components

which they can then contribute upstream for general use.

2.14.2 Implementation Goals

The construction of a large Coq proof, as in the development of any complex piece

of software, demands attention to quality of design and implementation. Due to the

lack of well established engineering techniques for interactive proofs we describe and

justify some of our own criteria here. Discussion of Adam Chlipala’s automated style

of theorem proving is given as part of a larger discussion about proof automation in

the Evaluation chapter (§4.4.3).

Firstly, our Coq proofs should be easy to read and understand. By this we mean

that additional complexity or obfuscation that detracts from the intent of the proof

should be kept to a minimum. Coq proofs differ from most other bits of code in that

they are often difficult to read without knowing the goal and hypotheses at each step,

so our criteria for readability must take this into account.

Some heuristics we can use to assess readability are:

• Different levels of indentation for goals and sub-goals.

• Minimal nesting of cases and sub-cases; prefer lemmas.

• Meaningful variable names at every step; avoid auto-generated names.

• Short proofs of lemmas.

These heuristics are adapted from common software engineering practice, and should

be familiar to anyone with a programming background. Short proofs of lemmas are like

short functions, and preferring a small lemma to more code in the same lemma is like

preferring a utility function to more code in the same function body. The meaningful

32

Michael Alexander Sproul A Library Based Approach to the Verification of
Languages with Linear Types

naming of variables at every step links back to our altered definition of readability

where we imagine that the reader is stepping through the proof examining the goals

and hypotheses at each step.

One aim of readable proofs is to convey key insights, but readability also aids main-

tainability. Proofs, particularly libraries of proofs, are not static entities and must be

constructed so that they can be updated as easily as possible as features are added and

new versions of related software are released. Between different versions of the theorem

prover the behaviour of tactics can change in ways that are not backwards compatible.

References to automatically named variables are considered fragile as a change in the

automatic name generation can invalidate the reference and all subsequent proof steps.

Some additional criteria to aid maintainability are:

• No repetition of proof script.

• Markers to enforce different cases and sub-cases.

Avoiding copied sections of proof script aids maintainability in an obvious way – chang-

ing one section of code doesn’t require changing all of its copies.

Enforced case markers improve the clarity of error messages and the general debugging

experience. By enforced we mean that the case markers only allow a new case to begin

if the existing case has already been solved. Without case markers a tactic failure early

in a proof script can cause tactics on subsequent lines to be applied to the wrong goals,

leading to confusing error messages. With case markers, the cases that fail are isolated

from their surroundings.

An assessment of the work according to this evaluation framework is given in the

Evaluation chapter (chapter 4). We turn our attention now to a detailed description of

the work.

33

A Library Based Approach to the Verification of Lan-
guages with Linear Types

Michael Alexander Sproul

Chapter 3

Own Work

3.1 Research Questions

The primary research question that this thesis attempts to answer relates to the efficient

development of mechanically verified proofs about languages with substructural typing.

Specifically,

• What are the common properties of all proofs about substructural languages,

and can these properties be exploited to avoid duplicated work in the context of

interactive theorem proving?

In the context of Coq, this is can concretely be phrased:

• Is it possible to write Coq lemmas and definitions which are useful for the verifi-

cation of numerous substructural type systems?

3.2 Outline of Own Work

As part of this thesis, the following work has been completed:

34

Michael Alexander Sproul A Library Based Approach to the Verification of
Languages with Linear Types

• Development of general definitions and lemmas about context splitting and other

actions on typing environments.

• Proof of type soundness for a linear lambda calculus.

The proof of type soundness for the linear lambda calculus consists of a collection of

lemmas and definitions, culminating in proof of progress and preservation which

together establish soundness.

We begin by defining the language for which we have established type soundness, and

continue with an in-depth discussion of how it was formalised in Coq. The definitions

and lemmas provided by the library are motivated by the proof and are discussed as

they arise.

3.3 Purely Linear Lambda Calculus

The language formalised is a wholly linear subset of DILL, extended with uninterpreted

primitive types. For brevity, call this language PLLC, for the Purely Linear Lambda

Calculus. PLLC provides just enough features to reason about linearity in interesting

ways, while not being too labour-intensive to formalise. Its syntax is:

x ∈ Vars

s ∈ Strings

A,B ::= I | A(B | TyPrim s

t, u ::= ∗ | x | (λx : A. t) | (t u) | TPrim s

v ::= ∗ | x | (λx : A. t) | TPrim s

The primitive types provide some types other than the unit type for the function type

constructor to act on. Their inclusion has minimal impact on the proof of soundness

and they can be removed without altering the outcome. All of the other terms have

the same meaning as in DILL. The typing rules for PLLC are shown in Figure 3.1.

35

A Library Based Approach to the Verification of Lan-
guages with Linear Types

Michael Alexander Sproul

x : A ` x : A
(Lin-Var) ∅ ` ∗ : I

(Unit)

∆, x : A ` t : B

∆ ` λx : A. t : A(B
((-I)

∆1 ` u : A(B ∆2 ` t : A

∆1,∆2 ` (u t) : B
((-E)

∅ ` TPrim s1 : TyPrim s2
(Prim)

Figure 3.1: Typing Rules for PLLC

With the exception of the rule for primitives, PLLC’s typing rules are a subset of

DILL’s, with the intuitionistic contexts Γ removed. Hence, in PLLC, every variable

is linear and every function consumes its input. In the ((-E) rule, note the use of

context splitting (∆1,∆2) to divide the variables available to an application. The rule

for primitives allows any primitive term to be assigned any primitive type, the intention

being that primitive types are handled by a separate mechanism, as in a compiler.

The operational semantics for PLLC are derived from call-by-value semantics for the

Simply-Typed Lambda Calculus [PCG+15]. The three rules, shown in Figure 3.2 in-

clude the (β) rule for computation by substitution, and two rules for evaluating appli-

cations. The (StepApp1) rule states that if the first half of an application u can step

to a term u′, then the entire application can take a step by stepping u: (u t)⇒ (u′ t).

The (StepApp2) rule is a similar rule for the second sub-term of an application, and

applies only once the first sub-term has been reduced to a value.

By enforcing the restriction that the first sub-term of the application in (StepApp2) is

a value, an evaluator never needs to choose which side should be evaluated first, thus

removing non-determinism. If we include the (β) rule in our consideration we see that

the stepping relation as a whole is deterministic, although this property isn’t verified

in our Coq proofs.

As is somewhat standard in syntax-driven Coq proofs about programming languages

[PCG+15], we use inductive definitions for the terms, types and typing judgements

36

Michael Alexander Sproul A Library Based Approach to the Verification of
Languages with Linear Types

((λx : A. t) v)⇒ t[v/x]
(β)

u⇒ u′

(u t)⇒ (u′ t)
(StepApp1)

t⇒ t′

(v t)⇒ (v t′)
(StepApp2)

Figure 3.2: Operational Semantics for PLLC

of the language. Translating the semi-formal description of the language into Coq

definitions is straight-forward once a few key parts of the representation are decided

upon. Specifically:

• How do we represent the names of variables? As discussed in §2.11, we elect to

use François Pottier’s DbLib library for de Bruijn indices.

• How is substitution implemented? DbLib provides a substitution function given

a few basic properties of a language. The implementation of this is discussed in

the next section, §3.4.

• How are typing contexts represented? How is context splitting implemented?

These questions are the topic of the upcoming sections: §3.5, §3.6, §3.7.

Discussion of the exact representation of terms, typing judgements and operational

semantics is given in the Appendix, sections §A.1, §A.2, §A.3.

Type soundness is the property that we would like to establish to show that PLLC is a

well-behaved programming language. We do this by proving progress and preservation

lemmas, as defined in §2.5. The statement of these lemmas in Coq is given in §3.8 and

§3.9, as well as consideration of how they were proved.

The proofs of progress and preservation are language-specific in that they only apply

to PLLC. We are primarily interested in the universal lemmas which can be used

37

A Library Based Approach to the Verification of Lan-
guages with Linear Types

Michael Alexander Sproul

independently of PLLC and may be applicable to the verification of other linearly

typed languages. In general, any lemmas that reference the terms, semantics or typing

rules of PLLC are language specific, while lemmas about context splitting and typing

contexts are universal and are part of our library.

3.4 Integrating with DbLib

DbLib provides functions for substitution and lifting that abstract over the manipu-

lation of de Bruijn indices. Client libraries wanting to make use of DbLib need only

implement a few fundamental operations via Coq’s type-classes [CS12]. For the linear

lambda calculus we can use essentially the same definitions as for the simply typed

lambda calculus, which are provided as an example with DbLib.

First, we must inform DbLib which of our term constructors is for variables. DbLib

allows the types of values (V) and terms (T) to differ, but we don’t make use of this

capability, instead using terms everywhere and the value predicate. The type-class

has the following definition in DbLib:

Class Var (V : Type) := {

var: nat -> V

}.

Our instance is straight-forward:

Instance Var_term : Var term := {

var := TVar

}.

To convey how variables are bound and scoped, we must implement DbLib’s Traverse

type-class, which has a single function called traverse. From the DbLib documenta-

tion:

38

Michael Alexander Sproul A Library Based Approach to the Verification of
Languages with Linear Types

traverse can be thought of as a semantic substitution function. The idea is,

traverse f l t traverses the term t, incrementing the index l whenever a

binder is entered, and, at every variable x, it invokes f l x. This produces

a value, which is grafted instead of x.

The only binders in our linear lambda calculus are lambda abstractions, so our imple-

mentation of traverse only has to increment l when recursing below a TAbs constructor.

This is the same as for the simply typed lambda calculus. If more substitution func-

tions were required, as would be the case in a language with polymorphism and type

substitutions, distinct named instances of Traverse could be created for each use.

Fixpoint traverse_term (f : nat -> nat -> term) l t :=

match t with

| TVar x =>

f l x

| TAbs t e =>

TAbs t (traverse_term f (1 + l) e)

| TApp e1 e2 =>

TApp (traverse_term f l e1) (traverse_term f l e2)

| _ => t

end.

To ensure that the client’s implementation of traverse behaves sensibly and can be

manipulated accordingly, DbLib requires the implementation of five further type-classes

that establish semantic properties of traverse. Also provided are five tactics for proving

these properties automatically, which we found to be sufficient for our simple use-case.

Given these type-class definitions, DbLib provides a substitution function that we can

make use of in the operational semantics for our language. The type of the substitution

function is V -> nat -> T -> T, which is specialised to term -> nat -> term ->

term. The Coq implementation of the (β) rule makes use of it, as shown in §A.3.

39

A Library Based Approach to the Verification of Lan-
guages with Linear Types

Michael Alexander Sproul

3.5 Representing Typing Contexts

Before defining an inductive predicate for our typing relation, a representation for

typing environments must be selected. In semi-formal proofs, typing judgements are

written H ` e : τ , and the environment H is assumed to permit various operations

such as looking up the type of a variable x (denoted H[x]) and (re)assigning a type to

a variable x, (denoted H[x 7→ τ]).

As noted in the Background chapter, control over the actions permitted on typing

contexts is at the core of substructural typing. Together with our choice to use de

Bruijn indices for variable naming, this narrows down our choice of representation. We

have the following options to consider:

• Functions: Some Coq formalisations of languages with structural typing [PCG+15]

make use of functions to encode partial maps from variables to types. Assign-

ing a type involves wrapping the existing environment in another conditional

statement, as in insert x τ H := fun y => if x = y then Some τ else H

y. This approach is unsuitable for substructural type systems because the func-

tion is opaque and can’t be disassembled into two functions which are equivalent

when combined. Given an arbitrary function, it is impossible to know that it is

always going to consist of a conditional of the form shown, and therefore it is also

impossible to extract any of the information about x, τ or the original H.

• Lists of Types: We could consider using a list of types so that the type for vari-

able î is at index i. This is preferable to using a function because we can inspect

and destructure a list, and can also perform induction. However, splitting an

environment becomes problematic because we need to keep the type for variable

î at index i, even if some or all of the types at indices less than i should no longer

be available because they were assigned to the other side of the split. Essentially,

if we are to use a list, we need a filler value to occupy the evacuated positions.

This leads to our next option:

• Lists of Optional Types: What if we rather than using a list of types, we use a

40

Michael Alexander Sproul A Library Based Approach to the Verification of
Languages with Linear Types

list of option type, so that types which are no longer available are represented

by None entries? This fulfils all of our requirements: we can look-up types, alter

them, add new entries and split an environment so that variables and their types

are divided between the two new environments.

For these reasons, our formalisation makes use of a list of optional types, as provided by

the env type from DbLib. However, the lemmas about env provided by DbLib proved

to be insufficient for reasoning about substructural typing rules. For example, DbLib

treats the empty list [] (nil) as the only empty environment, when it is often useful

to treat any number of Nones as an empty environment. Further, context splitting

defined on Env is general enough to be of use in multiple DbLib-based formalisations,

so why not re-use this effort? The next two sections describe these two aspects of our

formalisation, and this thesis’s contribution to a general framework for substructural

languages.

3.6 Emptiness

We define the following predicate for environments which is compatible with any en-

vironment from DbLib. We say that an environment is empty if it contains no typing

information. Hence, the empty list environment (nil) is empty, as is any number of

None values.

Inductive is_empty {A} : env A -> Prop :=

| is_empty_nil : is_empty nil

| is_empty_cons E (EmptyTail : is_empty E) : is_empty (None :: E).

The necessity of a predicate for emptiness arises from several uses of inductive loading in

proofs of lemmas related to substitution and type preservation. Using nil environments

proved to be too limiting, and there are several cases in the proof where an induction

generates an empty environment like raw_insert x None nil, and has to apply an

inductive hypothesis about empty contexts to it.

41

A Library Based Approach to the Verification of Lan-
guages with Linear Types

Michael Alexander Sproul

In order to be useful in the verification of languages, lemmas about the properties of

the is_empty predicate and its interaction with other parts of the system are required.

Of these lemmas, the ones involving interaction with DbLib were slightly more dif-

ficult to prove than those about simple Coq constructs. Examples of lemmas about

emptiness are shown below, the full set can be found in the file Linear/Empty.v in the

accompanying source code (§A.4).

Lemma empty_repeat : forall A (E : env A),

is_empty E ->

E = repeat (length E) None.

(* Proof by induction on is_empty E *)

Lemma empty_lookup : forall A x (E : env A),

is_empty E ->

lookup x E = None.

(* Proof by induction on x *)

3.7 Context Splitting

Context splitting is the operation by which a typing environment, implemented as a

list (option T), is split so that it may be used to type two expressions. We use the

notation E = E1 ◦E2 to represent the splitting of E into two environments E1 and E2

such that each variable from E appears in only one of E1 and E2.

In PLLC, the typing rule for application requires that the context used to type (e1e1)

can be split into two contexts that type e1 and e2 individually. This splitting causes

variables from the typing context to be used at most once in the expression (e1e2), as

each element of the context must be assigned to either the left or right sub-expression.

As we are working with a list, it makes sense to preserve the length of the context when

splitting. As a base case we have [] = [] ◦ []. If the list contains one or more elements,

then that element can either be assigned to the left or to the right. In Coq, we define

42

Michael Alexander Sproul A Library Based Approach to the Verification of
Languages with Linear Types

an inductive predicate over contexts so that context_split E E1 E1 ≡ E = E1 ◦ E2.

Inductive split_single {A} : option A -> option A -> option A -> Prop :=

| split_none : split_single None None None

| split_left (v : A) : split_single (Some v) (Some v) None

| split_right (v : A) : split_single (Some v) None (Some v).

Inductive context_split {A} : env A -> env A -> env A -> Prop :=

| split_nil : context_split nil nil nil

| split_cons E E1 E2 v v1 v2

(SplitElem : split_single v v1 v2)

(SplitPre : context_split E E1 E2) :

context_split (v :: E) (v1 :: E1) (v2 :: E2).

3.7.1 Single Element Splits

One may wonder if the presence of an accompanying split_single predicate is nec-

essary, as the same meaning can be achieved with the following definition that places

the splitting of single elements in-line:

Inductive context_split : env A -> env A -> env A -> Prop :=

| split_nil : context_split nil nil nil

| split_left E E1 E2 v

(SplitPre : context_split E E1 E2) :

context_split (v :: E) (v :: E1) (None :: E2)

| split_right E E1 E2 v

(SplitPre : context_split E E1 E2) :

context_split (v :: E) (None :: E1) (v :: E2).

Although for the purposes of forward reasoning both definitions are equally convenient,

when performing inversion on terms of type context_split E E1 E2 it is often useful

to be able to abstract over the splitting of individual elements, particularly as this

means there are less cases generated by the inversion.

43

A Library Based Approach to the Verification of Lan-
guages with Linear Types

Michael Alexander Sproul

For example, in the proof of insert_none_split_backwards, using context splitting

on single elements saves duplicating or creating automation for the main part of the

proof. The statement of the lemma is:

Lemma insert_none_split_backwards : forall A (E : env A) E1 E2 x,

context_split (raw_insert x None E) E1 E2 ->

exists E1’ E2’,

E1 = raw_insert x None E1’ /\

length E1’ = length E /\

E2 = raw_insert x None E2’ /\

length E2’ = length E /\

context_split E E1’ E2’.

Intuitively, this lemma states that if we have inserted None into the typing context at

the position for variable x, then the two environments resulting from the split of this

environment must also contain None at position x. The proof is by case analysis on

whether or not the variable inserted is past the end of the environment (x >= length

E). In the case where it is not past the end, and x is greater than 0, we reach a goal of

the form:

exists X1 X2 : env A,

e1 :: E1’ = raw_insert (S x’) None X1 /\

length X1 = S (length E’) /\

e2 :: E2’ = raw_insert (S x’) None X2 /\

length X2 = S (length E’) /\

context_split (e :: E’) X1 X2

Here, we have E = e :: E’, E1 = e1 :: E1’, E2 = e2 :: E2’, x = S x’ relative

to the statement of the lemma.

Without a split_single definition, inversion of context_split (e :: raw_insert

x’ None E’) (e1 :: E1’) (e2 :: E2’) forces us to consider the cases where e1 =

None, e2 = Some t and e1 = Some t, e2 = None separately. In this proof, this isn’t

44

Michael Alexander Sproul A Library Based Approach to the Verification of
Languages with Linear Types

an important distinction, because we really just need to apply the inductive hypoth-

esis to obtain E1’’ and E2’’ such that E1’ = raw_insert x’ None E1’’ and E2’ =

raw_insert x’ None E2’’. We can then instantiate X1 and X2 with exists (e1 ::

E1’’), (e2 :: E2’’) and knock over the remaining goals with facts from the proof

context. This all works with a split_single definition, but without one, the two cases

have to be handled with two different calls to the exists tactic; requiring duplication

of proof script, or custom Ltac to parametrise the calls.

Hence, split_single is a more general and useful way for dealing with context split-

ting, as it allows us to prove goals of the form context_split (e :: E) (e1 ::

E1) (e2 :: E2) without knowing the exact values of e, e1 and e2. If the exact val-

ues are required for a proof, they can still be considered by performing inversion on

the split_single e e1 e2 fact.

3.7.2 Properties of Context Splitting

We prove several basic properties of context splitting, such as commutativity, as well

as lemmas motivated by the proof of soundness for the linear lambda calculus.

Length If E = E1 ◦ E2, then the lengths of all three contexts are the same.

Commutativity

If we can split E = E1 ◦ E2, then we can also split E = E2 ◦ E1. In Coq, proof is by a

straight-forward induction on the structure of the context_split, and depends on a

similar commutative property of split_single.

Lemma split_commute : forall A (E : env A) E1 E2,

context_split E E1 E2 -> context_split E E2 E1.

Proof with boom.

intros A E E1 E2 Split.

induction Split...

Qed.

45

A Library Based Approach to the Verification of Lan-
guages with Linear Types

Michael Alexander Sproul

Associativity If E = E0 ◦ (E1 ◦ E2) then E = (E0 ◦ E1) ◦ E2.

In Coq we need an existential to express the existence of a context that splits into E0

and E1.

Lemma split_assoc : forall A (E E0 E1 E2 E12 : env A),

context_split E E0 E12 ->

context_split E12 E1 E2 ->

(exists E01, context_split E E01 E2 /\ context_split E01 E0 E1).

The justification for calling this operation associativity is the view of (◦) as a partial

binary operator for combining contexts. From this view, context splitting is a partial

commutative monoid, with repeat n None as the identity element. Another name for

this structure is a separation algebra (assuming that (◦) is also cancellative, which it

is). Further discussion of this is given later when evaluating our approach, in §4.3.

4-way Splits

In his proofs about uniqueness typing Edsko de Vries [dVPA07, dV08] establishes all of

these properties, but proves the associativity lemma using a 4-way split lemma like this:

E = (E1a◦E1b)◦(E2a◦E2b) −→ E = (E1a◦E2a)◦(E2a◦E2b). In addition to associativity

being provable from this lemma, the opposite is also true, and we prove a version of

this lemma called split_swap using a few simple applications of commutativity and

associativity.

Rotation The proof of preservation requires a lemma of the form: E = E0◦(E1◦E2)⇒

E = E1 ◦ (E0 ◦ E2), which is provable using the other lemmas above.

Emptiness Lemmas about empty contexts as the identity element for context splitting

are provable using a few lines of proof script. For details, see Linear/Context.v in the

accompanying source code (§A.4).

46

Michael Alexander Sproul A Library Based Approach to the Verification of
Languages with Linear Types

3.7.3 Lemmas Required for Soundness

In order to prove soundness, several lemmas about the interaction between inserts and

context splitting were required. Although many of the lemmas are conceptually simple,

some required significant effort and represent a large portion of the work involved in

the proof of soundness for the linear lambda calculus. Many lemmas also involve the

insertion of None values into contexts, which is a consequence of the strengthened in-

duction required to prove the substitution lemma (see the next section on substitution,

§3.9.1).

The first, and perhaps most difficult to prove, was insert_none_split_backwards,

discussed previously in the section about split_single. We attribute the difficulty

in proving the lemma to the fact that we initially lacked ways to express many of the

intuitive reasons for the lemma’s truth, described below. With the right definitions and

lemmas in place, the proof became quite straight-forward.

DbLib’s insert function behaves in two different ways depending on the relationship

between the variable x being inserted and the length of the existing environment, E. If

x < length E, then the type for x is inserted between existing elements, with subse-

quent elements being shunted along. Conversely, if x >= length E, then the type of

x is inserted after existing elements, with the intervening space padded by None val-

ues. These two cases are quite different to reason about, and any attempt at a direct

inductive proof on x or one of the environments inevitably leads to wanting to know

which of the two cases one is considering. For this reason, the first step of our proof is

to split on the comparison between x and length E.

To handle the case where x >= length E and padding None values are inserted, we

note that the values past the end of the old environment will all be None. Equipped with

a simple definition of a repeat function on lists, and some lemmas about list append,

the proof of this case is simple. Determining the right abstractions is the hardest part.

47

A Library Based Approach to the Verification of Lan-
guages with Linear Types

Michael Alexander Sproul

Lemma insert_none_def : forall A x (E : env A),

x >= length E ->

raw_insert x None E = E ++ repeat (S (x - length E)) None.

Lemma split_app : forall A (E : env A) E1 E2 n,

context_split (E ++ repeat n None) E1 E2 ->

exists E1’ E2’,

E1 = E1’ ++ repeat n None /\

E2 = E2’ ++ repeat n None /\

context_split E E1’ E2’.

The other case where the new None value is inserted in between existing elements is

handled by an induction on x, which is made simpler by knowing the bound on x, i.e.

x < length E. For example, it absolves us from having to deal with the case where

the environment is empty, which proved to be a nuisance in early versions of the proof.

Particularly as length (tl E1) = length (tl E2) does not imply that length E1

= length E2 as one may expect outside a total programming language.

A few other lemmas about context splitting and interactions with DbLib’s insert

were required for the proof of soundness. They can be found in the accompanying

proof sources, see §A.4. In general, the lemmas involving existentials required more

cunning to prove, and subsequently more cunning to apply, as discussed in §4.4.2.

3.8 Progress

With typing rules and small step semantics established we can state the progress lemma

which contributes to the proof of type soundness.

Theorem progress : forall E e t,

is_empty E ->

E |- e ~: t ->

(exists e’, step e e’) \/ value e.

48

Michael Alexander Sproul A Library Based Approach to the Verification of
Languages with Linear Types

This theorem states that any closed term e that is well-typed can either be stepped

using the small step semantic relation, or is already a value and cannot be evaluated

further.

Proof is by induction on the typing derivation E |- e ~: t. Unlike the proof of

preservation presented in the next section, the proof of progress requires very few

supporting lemmas about context splitting or substitution. Most of the cases in the

induction require reasoning about the interaction between typing and term structure,

which can be handled by simple inversions. For example, one of the supporting lem-

mas states that any value assigned a function type under an empty environment must

necessarily be a λ-abstraction:

Lemma fun_value_is_abs : forall E e t1 t2,

is_empty E ->

E |- e ~: TyFun t1 t2 ->

value e ->

(exists e’, e = TAbs t1 e’).

Given that most of the verification effort was expended reasoning about context split-

ting, substitution and other lemmas required for preservation, the effort required to

prove progress represents a relatively small fraction of the total effort. The fact that

progress and preservation each form “half” of the soundness proof does not imply that

the difficulty of proving soundness is split evenly between them.

3.9 Preservation

The preservation lemma states that if a well-typed closed term e can take a step to

another term e′, then e′ is also well-typed. In other words, the type of a term is

preserved as it is evaluated in accordance with the small-step semantics.

49

A Library Based Approach to the Verification of Lan-
guages with Linear Types

Michael Alexander Sproul

Theorem preservation : forall E e e’ t,

is_empty E ->

E |- e ~: t ->

step e e’ ->

E |- e’ ~: t.

Proof is by induction on the stepping of e to e′, step e e’. In the three cases that

result from the three stepping rules, the two for applications are proved directly from the

inductive hypothesis. The remaining case for β-reduction involves interaction between

substitution, typing and context splitting, and is proved via a supporting substitution

lemma.

3.9.1 Substitution

The substitution lemma states that the result of a substitution is well-typed if the terms

involved are well-typed. With substructural typing, we must also consider the supply

of free variables to both terms using context splitting, so the lemma takes the form:

E1 ` e1 : τ1 E2, x : τ1 ` e2 : τ2
E1 ◦ E2 ` e2[e1/x] : τ2

Substitution

Substitution lemmas similar to this are common in proofs of similar complexity, as in

Software Foundations [PCG+15] and the examples accompanying DbLib. In Software

Foundations, a weakening lemma is used in the proof of the substitution lemma, but

with substructural typing this technique is unavailable.

In Coq the lemma is:

Lemma substitution: forall E2 e2 t1 t2 x,

insert x t1 E2 |- e2 ~: t2 ->

forall E E1 e1, E1 |- e1 ~: t1 ->

context_split E E1 E2 ->

E |- (subst e1 x e2) ~: t2.

50

Michael Alexander Sproul A Library Based Approach to the Verification of
Languages with Linear Types

Proof is by dependent induction on the judgement insert x t1 E2 |- e2 ~: t2.

Dependent induction allows us to take into account the fact that the environment is

insert x t1 E2 rather than an unadorned variable (e.g. E). This is achieved by

replacing instantiated variables with general ones, and then adding constraining equal-

ities. In this case, the only instantiated variable is insert x t1 E2, which dependent

induction will replace by a new universally quantified variable Enew and the equation

Enew = insert x t1 E2. With the goal in the form described the dependent induction

tactic then applies the induction principle for has_type to generate sub-goals for each

of the cases, whilst preserving the newly added equality constraints. Coq’s dependent

induction is based on Conor McBride’s BasicElim tactic [McB00] which makes use of

Conor’s humorously named “John Major” heterogeneous equality (JMeq). Heteroge-

neous equality requires the addition of an axiom, but our use of it is restricted to the

proof-of-concept and it isn’t required to use the library.

Simple inversion removes the cases that are absurd due to the insert x t1 E2 environ-

ment, leaving three cases for variables, λ-abstractions and applications. The variable

case is handled by some straight-forward reasoning about empty contexts, and requires

no new supporting lemmas, while the other two cases form the motivation for several

of the lemmas about inserts and context splitting.

The λ-abstraction case requires a proof that the term being substituted is well-typed

under the environment for the abstraction sans binder, i.e. (None :: E1) |- shift

0 e1 : t1. This motivates typing_insert_none, which in turn motivates insert_-

none_split. Although typing_insert_none is more general in that it allows us to

prove facts of the form raw_insert x None E |- e : t and not just raw_insert

0 None E |- e : t, generalising for all x makes related lemmas easier to prove by

enabling induction on x. This technique is sometimes referred to as inductive loading.

The application case requires that one side of the application be well-typed without

referring to the substitution variable x. This motivates the following lemma, typing_-

insert_none_subst:

51

A Library Based Approach to the Verification of Lan-
guages with Linear Types

Michael Alexander Sproul

Lemma typing_insert_none_subst : forall E e x junk t,

raw_insert x None E |- e ~: t ->

E |- subst junk x e ~: t.

This in turn motivates the rest of the lemmas about inserting none into a typing context,

including the difficult to prove insert_none_split_backwards – discussed above.

To prove this lemma, DbLib was extended with a lowering operation that is conceptu-

ally inverse of lifting. In the case where variables are lowered by 1 we call the operation

unshifting, by analogy with lifting by 1 (shifting). The lemma is proved by establishing

that a similar lemma holds for unshift x e, and an equivalence of unshift x e and

subst junk x e when x does not appear free in e (see contains_var).

The addition of lowering to DbLib was the only substantial change required for our

proof of soundness for PLLC. A few other minor changes to use raw_insert instead

of insert in some lemmas were also made. Although the lowering operation might

be useful upstream, further work is required to unify it with lifting to reduce the

maintenance burden for DbLib [Spr16].

3.10 Summary

Our Coq formalisation of PLLC was able to make use of universal lemmas about empti-

ness and context splitting developed as part of this thesis. These lemmas represent a

significant portion of the effort required to establish type preservation for PLLC. Fur-

ther, the formalisation was able to make successful use of François Pottier’s DbLib

library, for substitution operations and basic actions on typing environments. The cre-

ation of a generic library for context splitting provides a positive answer to our primary

research question about exploiting commonalities in formalisations of languages with

substructural typing. The extent to which the library is applicable to other formalisa-

tions is discussed in the next chapter.

52

Michael Alexander Sproul A Library Based Approach to the Verification of
Languages with Linear Types

Chapter 4

Evaluation

In this section we assess the quality of the work according to the Evaluation Framework

of Section §2.14. We discuss the success of the library according to its conceptual goals,

primarily by outlining how a formalisation of L3 may make use of the library. Further,

we evaluate the library’s implementation according to the implementation goals and

discuss possible improvements.

4.1 Generality and Applicability

According to the conceptual goals of our evaluation framework, we would like the library

to be applicable to the formalisation of languages more complex than the linear lambda

calculus. In concrete terms, this means that the context splitting operation provided by

the library should be useful in constructing syntactic proofs of soundness for some class

of languages with substructural typing. We argue that this class of languages includes

those based on DILL – which could act as a foundation for further formalisations.

Extending the proof-of-concept LLC proof to a complete formalisation of DILL would

require the addition of an intuitionistic context, product types and bang types. The

paper for DILL [Bar96] includes proofs of substitution lemmas similar to the one used

in the proof of preservation for our LLC, which suggests that it would admit a complete

53

A Library Based Approach to the Verification of Lan-
guages with Linear Types

Michael Alexander Sproul

proof of soundness in a syntactic style. This is in contrast to several earlier systems

based on linear logic, which Philip Wadler showed do not have substitution lemmas

[Wad91]. Wadler’s result is our primary motivation for using DILL as a foundation,

motivated further by Pottier’s success with DILL-based syntactic soundness proofs in

SSHPS [Pot13a]. Interestingly, a draft version of the L3 paper from 2001 cites Wadler’s

result as a reason to avoid a syntactic proof, but this claim is absent from the final

paper [MAF05].

The proofs of progress and preservation for DILL could re-use much of the proof ef-

fort for PLLC. For example, the (⊗-I) rule is similar to PLLC’s existing ((-E) rule,

implying that inductive cases related to (⊗-I) could be handled using the same library

lemmas used for ((-E). Further, the lemmas provided by the library about insert

and context splitting would aid in reasoning about (⊗-E) and (!-E), which both include

augmented contexts in their premises.

Our approach may also be applicable to a modified version of Edsko de Vries’ uniqueness

type system [dVPA07, dV08]. Edsko’s soundness proof is syntactic and makes use of an

inductive context splitting relation that is identical to ours except that it allows non-

unique (intuitionistic) types to be split to both sides. To make his system compatible

with purely linear context splitting a stand-alone contraction rule could be added, in

the style of Wadler’s linear lambda calculus of 1993 [Wad93]. The contraction rule

would provide the ability to duplicate non-unique values, which would previously have

been provided by context splitting.

4.2 Towards a Coq Formalisation of L3

The Linear Language with Locations, L3, is a good candidate for assessing the appli-

cability of our approach to languages beyond the linear lambda calculus. As argued in

the Background chapter, its use of linear capabilities and shared pointers is typical of

other modern calculi supporting destructive updates.

L3 seems like it may be amenable to mechanical verification with our library because

54

Michael Alexander Sproul A Library Based Approach to the Verification of
Languages with Linear Types

like DILL and Wadler’s linear lambda calculus, contexts are split in a purely linear

way. Intuitionistic terms are handled by the dupl t and drop t primitives, rather

than implicit or explicit contraction and weakening, which means the context_split

predicate could be employed unaltered. However, as noted in the L3 paper [MAF05], the

operational semantics and typing rules are not set-up for a syntactic proof of soundness.

As an example, consider the preservation lemma for the memory allocation primitive

new v. Under the operational semantics the term steps unconditionally: (σ,new v)⇒

(σ] {l→ v}, pl, cap ⊗!(ptr l)q), hence we should have:

∆; Γ ` new v : ∃ρ. A (σ,new v)⇒ (σ] {l→ v}, pl, cap ⊗!(ptr l)q)

∆; Γ ` pl, cap ⊗!(ptr l)q : ∃ρ. A

The premises are both true, by the rules (New) and (new), but the conclusion is un-

provable. It might seem that we could apply the (LPack) rule, but this would require

l ∈ ∆, which is nonsensical because l is a location constant, not a location variable.

Further, we can’t type the pair cap ⊗!(ptr l) because there are no typing rules for lone

capabilities or pointers. To do a syntactic proof of soundness would therefore require

altering L3’s typing rules. The authors of the L3 paper suggest using store typing, as in

Alias Types [SWM00], whereby constraints on the runtime store σ are expressed in the

typing rules. In this case, reasoning about context splitting would likely only comprise a

small fraction of the proof effort. Pottier’s proof for SSPHS and the proof for λrgnUL are

around 20,000 lines of Coq and Twelf code respectively, implying that the complexity

of reasoning about these language features (destructive strong updates) increases proof

complexity significantly. For comparison, our linear lambda calculus formalisation is

around 1,300 lines of Coq code including the library for context splitting.

4.3 Further Work: Separation Logic

Conor McBride’s work on linear dependent types (§2.9), and François Pottier’s on

SSPHS (§2.8.2) both make use of typing contexts that record the number of available

55

A Library Based Approach to the Verification of Lan-
guages with Linear Types

Michael Alexander Sproul

occurrences of each variable, and use concepts from separation logic to handle context

splitting. This approach is strictly more general than our context splitting library,

and a library based on these ideas would likely form a better foundation for general

reasoning about typing contexts in linear languages. In this sense, our library is lacking

in generality. Further, ideas from separation logic are cited as foundational in much

of the literature surveyed, and could be exploited for multiple purposes, as Pottier

did with SSPHS [Pot13a]. Indeed, work on creating generalised libraries for separation

algebras has already been completed, in Coq [DHA09] and Isabelle/HOL [KKB12].

4.4 Quality of Coq Proofs

As identified in the Implementation Goals (§2.14.2) section of our evaluation criteria,

we would like the library to be both readable and maintainable.

4.4.1 Case Analysis and Indentation

To separate different cases when performing induction and destructuring, the proofs

make use of Benjamin Pierce’s Case markers from Software Foundations [PCG+15].

Combined with indentation, these markers fulfil our desire to create readable proofs

that are also resistant to corruption upon refactoring. The Case tactic ensures that

the proof remains structured by failing if an existing case at the same level remains

unproven, as can happen if an earlier tactic fails. The following example taken from the

proof of insert_none_def demonstrates our usage of the markers and our indentation

scheme:

induction x as [|x’]; intros.

Case "x = 0".

destruct E as [|e E’].

SCase "E = []".

rewrite raw_insert_zero...

56

Michael Alexander Sproul A Library Based Approach to the Verification of
Languages with Linear Types

SCase "E = e :: E’".

solve by inversion.

If, for example, the tactic rewrite raw_insert_zero... fails to prove the goal for

the case where E = [], then the SCase "E = e :: E’" tactic will fail and prevent

the proof from proceeding, clearly signalling that the error lies in the previous case.

The string arguments are uninterpreted but provide useful documentation.

The style of proof shown above was followed meticulously throughout the entire de-

velopment, aiding both readability and maintainability. Excessive nesting of cases was

also successfully avoided, with the deepest level of nesting being 3 sub-cases deep (an

SSCase), occurring only once in the proof-of-concept formalisation.

An alternative to using Pierce’s Case markers would have been to use Coq’s bullets,

which are available as part of Coq’s core since version 8.4 [Coq15]. They function

identically to the case markers except that documentation strings can’t be embedded

as case descriptions.

4.4.2 Avoiding Auto-Generated Variable Names

Avoiding references to automatically generated names is an important part of creating a

readable and maintainable Coq proof. Generated names are subject to change between

Coq versions, potentially rendering all pieces of proof script reliant on them in need of

upgrading. Furthermore, updating the proof can be difficult if the exact values that

the names were referring to have been forgotten, effectively requiring old goals to be

solved anew.

Although there are several straight-forward techniques that can be used to avoid gen-

erated names, in practice we didn’t manage to avoid them entirely, notably when using

dependent induction.

57

A Library Based Approach to the Verification of Lan-
guages with Linear Types

Michael Alexander Sproul

Introduction Patterns

When performing induction it is often necessary to leave some hypotheses as premises

of the inductive hypothesis. In order to avoid generating names for these hypotheses we

followed a pattern whereby the intros tactic would be used to name every hypothesis,

generalize dependent would be used to re-quantify the necessary variables, and then

induction performed. This leads to hypotheses being re-introduced with the names

used by intros, rather than generated ones. For example:

Lemma empty_lookup : forall A x (E : env A), is_empty E ->

lookup x E = None.

Proof.

intros A x E Empty.

generalize dependent E.

induction x as [|x’].

Case "x = 0".

intros. inversion Empty; auto.

(* Proof continues... *)

Here the fact is_empty E is named Empty by intros, abstracted over, and then au-

tomatically re-introduced with the name Empty. This relies partly on Coq’s name

generator to remember the name from the first application of intros, but this is less

fragile than relying on entirely automatic naming.

Named Constructor Arguments

A cosmetic variation of the above pattern for introductions could use named function

arguments instead of an explicit forall. This is the approach taken for all inductive

constructors, with the aim of generating unique names during inversion. For example,

we can declare the is_empty predicate in two semantically equivalent ways:

58

Michael Alexander Sproul A Library Based Approach to the Verification of
Languages with Linear Types

(* With implicit argument names *)

Inductive is_empty {A} : env A -> Prop :=

| is_empty_nil : is_empty nil

| is_empty_cons : forall E, is_empty E -> is_empty (None :: E).

(* With explicit argument names (preferred) *)

Inductive is_empty {A} : env A -> Prop :=

| is_empty_nil : is_empty nil

| is_empty_cons E (EmptyTail : is_empty E) : is_empty (None :: E).

With the second variant, when inverting a fact of the form is_empty E the fact about

the environment’s tail will be named EmptyTail if that name isn’t already taken. In

practice this was found to be quite effective, as most proofs required only a single

inversion per data-type. In cases where more control over naming is needed, names can

be provided to the tactic, as discussed in the next section.

Named Destructuring

Named destructuring allows names to be provided to tactics like induction, destruct

and inversion which would otherwise generate names automatically. For simple cases

like induction on natural numbers and lists, we found it to be highly effective, e.g.

induction n as [|n’]. However, destructuring large chains of existentials, conjunc-

tions and disjunctions in this manner quickly becomes unwieldy.

For example, our proof of soundness for PLLC contains a line: destruct AppPreSplit

as [E1’ [E2’ [? [? [? [? ?]]]]]]. This is to the detriment of both read-

ability and maintainability, in particular because changes to the lemma that creates

AppPreSplit would require digging into several layers of brackets to ensure the names

are correct and that the chain of conjunctions is fully decomposed. This is an area

where the library falls short of the evaluation criteria. Further work could seek to

eliminate maintenance burdens such as these, possibly using Arthur Charguéraud’s

improved tactics library, LibTactics [Cha16].

59

A Library Based Approach to the Verification of Lan-
guages with Linear Types

Michael Alexander Sproul

Dependent Induction

Dependent induction is used at one point in the proof of soundness for PLLC, as

discussed in §3.9.1. Unlike the regular induction tactic, Coq’s dependent induction

tactic doesn’t provide a way to explicitly name the variables introduced by the inversion

– there is no dependent induction x as [..]. In our proof, we fall back on using

the auto-generated names, which is less than ideal. We experienced the fragility of this

approach when refactoring, which demonstrates the utility of our other work to avoid

generated names.

4.4.3 Automation and Repetition

We found that repeated sections of proof script could be de-duplicated in one of two

ways: either by writing a lemma to encapsulate the common truth, or by using Coq’s

tactic language (Ltac) to repeat the same steps of reasoning. Of these, we found writing

a lemma to be preferable as we found Ltac code more difficult to debug. In this section

we discuss the efficacy of the automation employed by our proofs, and suggest possible

improvements.

In his book Certified Programming with Dependent Types [Chl16], Adam Chlipala ad-

vocates:

“The more uninteresting drudge work a proof domain involves, the more important it

is to work to prove theorems with single tactics.” “I like to say that if you find yourself

caring about indentation in a proof script, it is a sign that the script is structured

poorly.”

This is contrary to many of the steps taken by our proof to remain readable, including

the use of case markers and indentation discussed above. This is primarily because

constructing a proof in Chlipala’s style is easiest when following his approach from the

outset. Our proof began in a primarily manual style, with modest uses of the auto

tactic with explicit hint lemmas. Mid-way through the development a hint database

60

Michael Alexander Sproul A Library Based Approach to the Verification of
Languages with Linear Types

was created with an accompanying specialised version of auto called boom.

Adapting the proof to use boom did remove repetition in some places, but was quite

time-consuming for the savings achieved. The auto tactic works by repeatedly calling

the apply tactic with lemmas from the hint databases and the current set of hypotheses.

Unfortunately, many manual proofs are not structured as a straight-forward series of

lemma applications, which means significant effort is often required to adapt proofs for

use with auto. In our proofs, rewrites and inversion were the most significant barriers

to automation with auto because they don’t map cleanly onto stand-alone lemmas. To

simulate a rewrite with a lemma requires restating the goal before and after the rewrite,

which leads to a lemma for each goal and rewrite-rule pair. Similarly, the outcome of an

inversion is usually a set of equalities about the components of the term being inverted,

which can be used in a myriad of ways.

That said, the number of rewrites in our proof-of-concept is exacerbated by our choice

to keep DbLib’s definitions opaque. By default, DbLib exports the functions for lookups

and inserts as opaque to the Coq simplifier. This means that an explicit rewrite is re-

quired every time a lookup or insert needs simplification – the simpl tactic has no

effect. DbLib makes the definitions opaque by default to prevent “fragile simplifica-

tions”, and it is possible to selectively make definitions transparent again. If starting

the proof again from scratch or reworking the proof to be more automated, we believe

it would be best to make the definitions transparent for the whole project, with opt-in

opacity where it is required to deal with odd simplification behaviour. This would

remove rewrites and make auto applicable in more places.

As well as auto, Coq also includes an autorewrite tactic for repeatedly rewriting using

a collection of rewrite rules. Use of this tactic could be investigated as an alternative

to making definitions transparent, although it wouldn’t solve the problem of automati-

cally simplifying hypotheses, which we get for free with transparent definitions and the

simplify-everywhere tactic, simpl in *.

Although automating proofs extensively reduces proof-effort and therefore makes larger

developments feasible [Chl16], it is not without downsides. We found debugging Ltac

61

A Library Based Approach to the Verification of Lan-
guages with Linear Types

Michael Alexander Sproul

code quite difficult and labour-intensive. For example, Ltac’s semicolon operator which

makes it possible to “pipe” the results of tactics into each other, simultaneously makes

debugging the middle of a pipeline difficult. The debugging mode for Ltac (Set Ltac

Debug) doesn’t show intermediate results in semicolon pipelines and also isn’t available

in CoqIDE or Vim. This leaves one with no option but to break the pipeline apart

into individual tactic applications. If a tactic is failing in only a few branches this also

requires the temporary use of the admit tactic to navigate to the failing cases. Once the

error is found and fixed, one then has to glue the tactics back together. This debugging

experience is unarguably less than ideal, and is an inevitable consequence of automating

heavily using current tools. Our proof walks the line between difficult-to-debug Ltac

code and repetitive manual proof, erring slightly on the side of manual proof. Further

work could develop improved debugging facilities for Coq tactics, possibly using a

graphical interface to convey the branching into different cases.

4.5 Summary of Evaluation

In summary, the library partially satisfies our evaluation criteria for quality of concept

and implementation. Conceptually, the library is a success in that it aided us in the

formalisation of PLLC. However, PLLC is extremely simple, and consideration of more

complex languages like L3 and SSPHS reveals that the library isn’t general enough

to be useful in the formalisation of extensions to the linear lambda calculus involving

strong destructive updates. That said, we have argued that it is general enough to be

of use in a proof of soundness for DILL, and there may be ways to construct compatible

new languages with the same features as L3. Further, it may be possible that reasoning

about context splitting as we have defined it could be used in a non-syntactic proof of

soundness, possibly following the semantic interpretation of types for L3.

From an implementation perspective, the library and proof-of-concept are rather sat-

isfactory. As discussed above, the fragility of automatic variable naming was avoided

in all but one case involving the use of dependent induction. Readability of the proofs

was simplest to achieve, through case markers and indentation, although the result

62

Michael Alexander Sproul A Library Based Approach to the Verification of
Languages with Linear Types

may still not satisfy Chlipala. More automation and the use of third-party convenience

tactics are two areas identified as areas of slight deficiency. It’s possible that with these

improvements the development would also have been less time consuming.

63

A Library Based Approach to the Verification of Lan-
guages with Linear Types

Michael Alexander Sproul

Chapter 5

Conclusion

We have identified context splitting as a common trait of languages with substructural

typing, and have created a Coq library for context splitting, building upon DbLib. This

library aided in a syntactic proof of type soundness for a simple variant of the linear

lambda calculus, and we are confident that it could be scaled to handle all of Dual

Intuitionistic Linear Logic.

Overall we were able to achieve a satisfactory level of quality and expressiveness in

the mechanised Coq proofs, although some deficiencies in the use of automatic variable

naming and automation could be improved. Further work could look at using cus-

tom tactics for dealing with these problems in Coq, or address the more fundamental

challenge of building readable and maintainable facilities for proof automation. Follow-

ing Adam Chlipala’s mostly-automated philosophy from the start would be beneficial

from an automation standpoint, whilst also solving the issue of variable naming as a

side-effect.

Although it was initially hoped that the context splitting library would be useful in the

formalisation of more advanced languages, this is probably unrealistic. The first reason

for this is that more advanced languages tend to involve type system extensions that

obsolete context splitting as we have defined it, or contain so many other features that

context splitting only makes up a small fraction of the overall proof effort. Secondly, the

64

Michael Alexander Sproul A Library Based Approach to the Verification of
Languages with Linear Types

approach to context splitting whereby unavailable values are entirely erased is subsumed

by an approach based on separation algebras whereby the number of occurrences of a

variable is tracked in the typing context. This approach is used to great effect by

Pottier for SSPHS [Pot13a], and McBride for a fusion of linear and dependent typing

[McB16].

Pottier’s DbLib library for reasoning about de Bruijn indices was found to be highly

effective at abstracting over the details of capture-avoiding substitution. Our proofs

were able to make effective use of the library by defining only a few language-specific

functions. DbLib’s environment type, which is not used in Pottier’s own work, was also

found to be adequate for use with our simple linear language. Some minor additions

were made to DbLib while constructing the proof of soundness for PLLC, and further

work is required to integrate them into the upstream repository. Alternatively, the

proof for PLLC could be restructured so as not to rely on lowering, which was the main

addition to DbLib.

In a broad sense, the literature on substructural typing has reached a point of matu-

rity where the creation of practical tools is becoming feasible. The next generation of

operating systems, device drivers and language run-times can hopefully be built on the

foundation of formal verification. Projects like Adam Chlipala’s Bedrock [Chl11] and

Cyclone [GHJM05] are already a move in this direction. Further work could build a

compiler for a substructural language based on Pottier’s SSPHS [Pot13a], with accom-

panying verification tools. Cross-over with the impressive world of C verification also

seems like it would be productive.

Further, Mozilla’s Rust programming language represents an opportunity for substruc-

tural typing to break into the mainstream. Although its semantics are yet to be formally

specified, the foundations of Cyclone and the other systems surveyed could possibly be

adapted for this purpose. Considering this alongside the possibility of verification tools

built on linear dependent types as described in the work of McBride [McB16], these are

surely exciting times for substructural type systems.

65

A Library Based Approach to the Verification of Lan-
guages with Linear Types

Michael Alexander Sproul

Bibliography

[AAR+10] Amal Ahmed, Andrew W Appel, Christopher D Richards, Kedar N Swadi,
Gang Tan, and Daniel C Wang. Semantic foundations for typed assembly
languages. ACM Transactions on Programming Languages and Systems
(TOPLAS), 32(3):7, 2010. pages 24

[ACP+08] Brian Aydemir, Arthur Charguéraud, Benjamin C Pierce, Randy Pol-
lack, and Stephanie Weirich. Engineering formal metatheory. In ACM
SIGPLAN Notices, volume 43, pages 3–15. ACM, 2008. pages 29

[Bar96] Andrew Barber. Dual Intuitionistic Linear Logic. 1996. pages 5, 9, 53

[BPP14] Thibaut Balabonski, François Pottier, and Jonathan Protzenko. The de-
sign and formalization of Mezzo, a permission-based programming lan-
guage. Submitted for publication, 2014. pages 23, 28, 30

[BvEvLP87] T.H. Brus, M.C.J.D. van Eekelen, M.O. van Leer, and M.J. Plasmeijer.
Clean — a language for functional graph rewriting. In Gilles Kahn, editor,
Functional Programming Languages and Computer Architecture, volume
274 of Lecture Notes in Computer Science, pages 364–384. Springer Berlin
Heidelberg, 1987. pages 4

[CF07] Venanzio Capretta and Amy P Felty. Combining de bruijn indices and
higher-order abstract syntax in coq. In Types for Proofs and Programs,
pages 63–77. Springer, 2007. pages 27

[CGG+99] K Crary, Neal Glew, Dan Grossman, Richard Samuels, F Smith,
D Walker, S Weirich, and S Zdancewic. TALx86: A realistic typed assem-
bly language. In 1999 ACM SIGPLAN Workshop on Compiler Support
for System Software Atlanta, GA, USA, pages 25–35, 1999. pages 24

[Cha16] Charguéraud, Arthur. LibTactics, and TLC: a non-constructive library
for Coq. http://www.chargueraud.org/softs/tlc/, 2016. pages 29, 59

[Chl11] Adam Chlipala. Mostly-automated verification of low-level programs in
computational separation logic. ACM SIGPLAN Notices, 46(6):234–245,
2011. pages 24, 65

66

http://www.chargueraud.org/softs/tlc/

Michael Alexander Sproul A Library Based Approach to the Verification of
Languages with Linear Types

[Chl16] Adam Chlipala. Certified Programming with Dependent Types. MIT Press,
2016. pages 60, 61

[Coq15] Coq Development Team. The Coq Proof Assistant v8.4pl6: Ref-
erence Manual. https://coq.inria.fr/distrib/V8.4pl6/files/

Reference-Manual.pdf, 2015. pages 57

[CS12] Pierre Castéran and Matthieu Sozeau. A gentle introduction to type
classes and relations in coq. Technical report, Citeseer, 2012. pages 38

[DB72] Nicolaas Govert De Bruijn. Lambda calculus notation with nameless dum-
mies, a tool for automatic formula manipulation, with application to the
church-rosser theorem. In Indagationes Mathematicae (Proceedings), vol-
ume 75, pages 381–392. Elsevier, 1972. pages 27

[DFH95] Joëlle Despeyroux, Amy Felty, and André Hirschowitz. Higher-order ab-
stract syntax in Coq. Springer, 1995. pages 27

[DHA09] Robert Dockins, Aquinas Hobor, and Andrew W Appel. A fresh look
at separation algebras and share accounting. In Programming Languages
and Systems, pages 161–177. Springer, 2009. pages 56

[dV08] Edkso de Vries. Making Uniqueness Typing Less Unique. PhD thesis,
Trinity College Dublin, 12 2008. pages 19, 46, 54

[dVPA07] Edsko de Vries, Rinus Plasmeijer, and David M. Abrahamson. Unique-
ness typing simplified. In Implementation and Application of Functional
Languages, 19th International Workshop, IFL 2007, Freiburg, Germany,
September 27-29, 2007. Revised Selected Papers, pages 201–218, 2007.
pages 19, 20, 29, 30, 46, 54

[FM04] Matthew Fluet and Greg Morrisett. Monadic regions. In ACM SIGPLAN
Notices, volume 39, pages 103–114. ACM, 2004. pages 21

[FMA06] Matthew Fluet, Greg Morrisett, and Amal Ahmed. Linear regions are all
you need. In Peter Sestoft, editor, Programming Languages and Systems,
volume 3924 of Lecture Notes in Computer Science, pages 7–21. Springer
Berlin Heidelberg, 2006. pages 21, 30

[GHJ+15] Dan Grossman, Michael Hicks, Trevor Jim, Greg Morrisett, and Nikhil
Swamy. Cyclone the language, 2015. pages 21

[GHJM05] Dan Grossman, Michael Hicks, Trevor Jim, and Greg Morrisett. Cyclone:
A type-safe dialect of C. C/C++ Users Journal, 23(1):112–139, 2005.
pages 21, 65

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1 –
101, 1987. pages 2, 5, 11

[GLAK14] David Greenaway, Japheth Lim, June Andronick, and Gerwin Klein.
Don’t Sweat the Small Stuff: Formal Verification of C Code Without
the Pain. SIGPLAN Not., 49(6):429–439, June 2014. pages 4

67

https://coq.inria.fr/distrib/V8.4pl6/files/Reference-Manual.pdf
https://coq.inria.fr/distrib/V8.4pl6/files/Reference-Manual.pdf

A Library Based Approach to the Verification of Lan-
guages with Linear Types

Michael Alexander Sproul

[Gun92] Carl A Gunter. Semantics of Programming Languages. MIT Press, 1992.
pages 12

[ISO11] ISO. Information technology – Programming languages – C. ISO
9899:2011, International Organization for Standardization, Geneva,
Switzerland, 2011. pages 1

[JMG+01] Trevor Jim, Greg Morrisett, Dan Grossman, Yanling Wang, James Ch-
eney, and Mike Hicks. Formal type soundness for cyclone’s region system.
Technical report, Cornell University, 2001. pages 21

[KAE+14] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas
Sewell, Rafal Kolanski, and Gernot Heiser. Comprehensive Formal Verifi-
cation of an OS Microkernel. ACM Trans. Comput. Syst., 32(1):2:1–2:70,
February 2014. pages 3

[KKB12] Gerwin Klein, Rafal Kolanski, and Andrew Boyton. Mechanised separa-
tion algebra. In Interactive Theorem Proving, pages 332–337. Springer,
2012. pages 56

[Ler09] Xavier Leroy. Formal verification of a realistic compiler. Communications
of the ACM, 52(7):107–115, 2009. pages 4, 25

[MAF04] Greg Morrisett, Amal Ahmed, and Matthew Fluet. The Linear Language
with Locations: Technical Report TR-24-04. Technical report, Harvard
University, 2004. pages 18

[MAF05] Greg Morrisett, Amal Ahmed, and Matthew Fluet. L3: A Linear Lan-
guage with Locations. In Pawe l Urzyczyn, editor, Typed Lambda Calculi
and Applications, volume 3461 of Lecture Notes in Computer Science,
pages 293–307. Springer Berlin Heidelberg, 2005. pages 13, 30, 54, 55

[McB00] Conor McBride. Elimination with a motive. In Types for proofs and
programs, pages 197–216. Springer, 2000. pages 51

[McB16] Conor McBride. A List of Successes That Can Change the World: Essays
Dedicated to Philip Wadler on the Occasion of His 60th Birthday, chapter
I Got Plenty o’ Nuttin’, pages 207–233. Springer International Publishing,
Cham, 2016. pages 23, 31, 65

[Moz15] Mozilla Resarch. The Rust Programming Language. https://

rust-lang.org/, 2015. pages 4, 30

[MWCG99] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From Sys-
tem F to typed assembly language. ACM Transactions on Programming
Languages and Systems (TOPLAS), 21(3):527–568, 1999. pages 24

[Nor98] Michael Norrish. C formalised in HOL. Technical report, University of
Cambridge, 1998. pages 3

68

https://rust-lang.org/
https://rust-lang.org/

Michael Alexander Sproul A Library Based Approach to the Verification of
Languages with Linear Types

[PCG+15] Benjamin C. Pierce, Chris Casinghino, Marco Gaboardi, Michael Green-
berg, Cǎtǎlin Hritcu, Vilhelm Sjoberg, and Brent Yorgey. Software
Foundations. Electronic textbook, 2015. http://www.cis.upenn.edu/

~bcpierce/sf. pages 26, 36, 40, 50, 56

[Pie02] Benjamin C. Pierce. Types and Programming Languages. MIT Press,
Cambridge, MA, USA, 2002. pages 12, 27, 28, 72

[Pot13a] François Pottier. Syntactic soundness proof of a type-and-capability sys-
tem with hidden state. Journal of functional programming, 23(01):38–144,
2013. pages 21, 22, 28, 30, 54, 56, 65

[Pot13b] François Pottier. The dblib library for de Bruijn indices in Coq. https:
//github.com/fpottier/dblib, 2013. pages 28

[PS99] Frank Pfenning and Carsten Schürmann. System description:
Twelf—a meta-logical framework for deductive systems. In Automated
Deduction—CADE-16, pages 202–206. Springer, 1999. pages 21

[Rey02] John C Reynolds. Separation logic: A logic for shared mutable data
structures. In Logic in Computer Science, 2002. Proceedings. 17th Annual
IEEE Symposium on, pages 55–74. IEEE, 2002. pages 30

[Spr16] Michael Sproul. Pull request for DbLib: Implement a ‘lowering’ operation.
https://github.com/fpottier/dblib/pull/5, 2016. pages 52

[SWM00] Frederick Smith, David Walker, and Greg Morrisett. Alias types. In Pro-
gramming Languages and Systems, pages 366–381. Springer, 2000. pages
30, 55

[TP11] Jesse A Tov and Riccardo Pucella. Practical Affine Types. In ACM
SIGPLAN Notices, volume 46, pages 447–458. ACM, 2011. pages 11

[Twe08] Twelf Project. Twelf Wiki - Higher-order abstract syntax. http://twelf.
org/wiki/Higher-order_abstract_syntax, 2008. pages 26

[Wad91] Philip Wadler. There’s no substitute for linear logic. 1991. pages 54

[Wad93] Philip Wadler. A taste of linear logic. In AndrzejM. Borzyszkowski and
Stefan Soko lowski, editors, Mathematical Foundations of Computer Sci-
ence 1993, volume 711 of Lecture Notes in Computer Science, pages 185–
210. Springer Berlin Heidelberg, 1993. pages 9, 54

[WF94] Andrew K Wright and Matthias Felleisen. A syntactic approach to type
soundness. Information and computation, 115(1):38–94, 1994. pages 12

69

http://www.cis.upenn.edu/~bcpierce/sf
http://www.cis.upenn.edu/~bcpierce/sf
https://github.com/fpottier/dblib
https://github.com/fpottier/dblib
https://github.com/fpottier/dblib/pull/5
http://twelf.org/wiki/Higher-order_abstract_syntax
http://twelf.org/wiki/Higher-order_abstract_syntax

A Library Based Approach to the Verification of Lan-
guages with Linear Types

Michael Alexander Sproul

Appendix

A.1 PLLC Syntax in Coq

To define the terms of PPLC we must first define the set of types. The reason for this
is that lambda abstractions are explicitly annotated with the type of their parameter
in order to avoid type-inference when writing proofs. A lambda abstraction (λx : τ.e)
is represented by the Coq expression TAbs τ e, which hides the name of the binding
variable x through the use of de Bruijn indices. The inductive definition for types is:

Inductive ty : Set :=

| TyUnit

| TyPrim : String.string -> ty

| TyFun : ty -> ty -> ty.

Now, with PLLC’s types defined, we can define the set of terms:

Inductive term : Set :=

| TUnit

| TPrim : String.string -> term

| TVar : nat -> term

| TAbs : ty -> term -> term

| TApp : term -> term -> term.

Variables are represented by the TVar constructor which takes a de Bruijn index repre-
senting the variable and constructs a term. Later when defining the typing judgement
we will see that a variable TVar i is well-typed only if the typing context contains a
type at index i.

In order to state the progress and preservation lemmas, Coq also needs an idea of
which terms are considered values, i.e. those terms in a form that can not be simplified
further. For this, we use an inductive predicate value t with the following definition:

Inductive value : term -> Prop :=

| VUnit : value TUnit

70

Michael Alexander Sproul A Library Based Approach to the Verification of
Languages with Linear Types

| VPrim : forall s, value (TPrim s)

| VVar : forall x, value (TVar x)

| VAbs : forall t e, value (TAbs t e).

Note that the type of value is term -> Prop. Given a term, t, a Coq term with type
value t witnesses the truth of the proposition value t, which itself has type Prop.
This is in contrast to ty and term which have type Set. Types in Prop are intended
to represent proof terms, while those in Set are meant to represent data. We use
Prop for all predicates to minimise friction with Coq’s standard library, which provides
definitions for basic logical connectives operating only on Props.

A.2 PLLC Typing Rules in Coq

Typing rules determine which terms are considered well-formed. We define an inductive
predicate has_type : (env ty) -> term -> ty -> Prop so that has_type E e t

is inhabited if the environment E determines e : t. In standard mathematical notation
this is E ` e : t, which we mirror using the Coq notation E |- e ~: t.

Reserved Notation "E ’|-’ e ’~:’ t" (at level 40).

Inductive has_type : (env ty) -> term -> ty -> Prop :=

| HasTyUnit E

(UnitPre : is_empty E) :

E |- TUnit ~: TyUnit

| HasTyPrim E s t

(PrimPre : is_empty E) :

E |- TPrim s ~: TyPrim t

| HasTyVar E x t

(VarPre : is_empty E) :

insert x t E |- TVar x ~: t

| HasTyAbs E e t1 t2

(AbsPre : (insert 0 t1 E) |- e ~: t2) :

E |- TAbs t1 e ~: (TyFun t1 t2)

| HasTyApp E E1 E2 e1 e2 t1 t2

(AppPreSplit : context_split E E1 E2)

(AppPreWT1 : E1 |- e1 ~: TyFun t1 t2)

(AppPreWT2 : E2 |- e2 ~: t1) :

E |- TApp e1 e2 ~: t2

where "E ’|-’ e ’~:’ t" := (has_type E e t).

Here we see the definitions for emptiness and context splitting coming into play. In
linear lambda calculus variables must be used exactly once, so a single variable x is well-
typed only under an environment containing a type for x and nothing else, as captured
by the HasTyVar rule. Similarly, primitive values must be typed under environments
containing no free variables.

71

A Library Based Approach to the Verification of Lan-
guages with Linear Types

Michael Alexander Sproul

A lambda abstraction (λ0̂ : τ. e) is well-typed if the body can be typed under an
environment extended by the type for its binder, (0̂ : τ). This is the only rule that
requires the input context (insert 0 t1 E) to differ in length to the output context
(E).

Function applications make use of the context_split operation to ensure that the
variables used to type an application (e1e2) are split between e1 and e2 without dupli-
cation. The rule also ensures that the type of the application (t2) is consistent with
the type of the function being applied (t1 -> t2) and the type of the argument (t1).

A.3 PLLC Operational Semantics in Coq

The following inductive definition encodes e⇒ e′ as step e e’.

Inductive step : term -> term -> Prop :=

| StepAppAbs e e’ v t

(BetaPreVal : value v)

(BetaPreSubst : subst v 0 e = e’) :

step (TApp (TAbs t e) v) e’

| StepApp1 e1 e1’ e2

(App1Step : step e1 e1’) :

step (TApp e1 e2) (TApp e1’ e2)

| StepApp2 v1 e2 e2’

(App2Val : value v1)

(App2Step : step e2 e2’) :

step (TApp v1 e2) (TApp v1 e2’).

The first rule, StepAppAbs is the familiar β-rule for evaluating the application of an
abstraction to a value. It states that function application is equivalent to the substi-
tution of the argument value for the bound variable in the body of the function. For
substitution, note the use of DbLib’s subst function.

We are using a call-by-value evaluation strategy, which means that only the outer-most
reducible expressions (redexes) are reduced, and only when their argument is a value
[Pie02]. Note that as a result there is no rule for stepping a λ-abstraction when its
body is capable of stepping, as in: e⇒ e′ −→ (λ0̂ : τ. e)⇒ (λ0̂ : τ. e′).

72

Michael Alexander Sproul A Library Based Approach to the Verification of
Languages with Linear Types

A.4 Complete Source Code

The complete source code for both the library and the proof of soundness for PLLC is
available on GitHub.

https://github.com/michaelsproul/dblib-linear

The commit-hash for the master branch at the time of writing is:

f4e6fb9becdaa208943ce0d180f2a30ef2f381de

73

https://github.com/michaelsproul/dblib-linear

	Introduction
	Background
	Coq and the Curry-Howard Correspondence
	Beyond C
	Overview of Linear and Affine Typing
	The Linear Lambda Calculus
	Structural Rules
	Summary of the Linear Lambda Calculus

	Operational Semantics and Type Soundness
	The Linear Language with Locations, L3
	Uniqueness Typing
	Systems of Capabilities
	Cyclone
	Pottier's Type-and-Capability System with Hidden State
	Mezzo

	Linear Dependent Types
	Typed Assembly Languages and Trustworthy Compilers
	Variable Naming and Binding
	Higher-order Abstract Syntax
	De Bruijn Indices and the Locally Nameless Approach

	Summary of Mechanisation Techniques
	Summary of Previous Work
	Evaluation Framework
	Conceptual Goals
	Implementation Goals

	Own Work
	Research Questions
	Outline of Own Work
	Purely Linear Lambda Calculus
	Integrating with DbLib
	Representing Typing Contexts
	Emptiness
	Context Splitting
	Single Element Splits
	Properties of Context Splitting
	Lemmas Required for Soundness

	Progress
	Preservation
	Substitution

	Summary

	Evaluation
	Generality and Applicability
	Towards a Coq Formalisation of L3
	Further Work: Separation Logic
	Quality of Coq Proofs
	Case Analysis and Indentation
	Avoiding Auto-Generated Variable Names
	Automation and Repetition

	Summary of Evaluation

	Conclusion
	Bibliography
	Appendix
	PLLC Syntax in Coq
	PLLC Typing Rules in Coq
	PLLC Operational Semantics in Coq
	Complete Source Code

